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Abstract 

Background The lint percentage of seed cotton is one of the most important parameters for evaluating seed cotton 
quality and affects its price. The traditional measuring method of lint percentage is labor-intensive and time-consum-
ing; thus, an efficient and accurate measurement method is needed. In recent years, classification-based deep learn-
ing and computer vision have shown promise in solving various classification tasks.

Results In this study, we propose a new approach for detecting the lint percentage using MobileNetV2 and transfer 
learning. The model is deployed on a lint percentage detection instrument, which can rapidly and accurately deter-
mine the lint percentage of seed cotton. We evaluated the performance of the proposed approach using a dataset 
comprising 66 924 seed cotton images from different regions of China. The results of the experiments showed 
that the model with transfer learning achieved an average classification accuracy of 98.43%, with an average precision 
of 94.97%, an average recall of 95.26%, and an average F1-score of 95.20%. Furthermore, the proposed classification 
model achieved an average accuracy of 97.22% in calculating the lint percentage, showing no significant difference 
from the performance of experts (independent-sample t-test, t = 0.019, P = 0.860).

Conclusion This study demonstrated the effectiveness of the MobileNetV2 model and transfer learning in calculating 
the lint percentage of seed cotton. The proposed approach is a promising alternative to traditional methods, provid-
ing a rapid and accurate solution for the industry.
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Introduction
Cotton is a crucial crop, and its fibers are widely uti-
lized in the manufacture of various textiles. Cotton 
fibers are long, uniformly coarse, and flexible, making 
them ideal for the production of textiles for a range of 

applications, including clothing, bedding, towels, cloth 
bags, and rope (Cao, 2015). Cotton is also used in the 
production of pigments and oils as a raw material in 
the food industry and the pharmaceutical industry. 
The global annual production of cotton is estimated to 
be approximately 20  million tons (Chen et  al.,  2018). 
Cottonseed, a byproduct of cotton production, holds 
substantial economic importance and has numerous 
applications in the agricultural and food industries 
(Kang et  al.,  2022; Ma et  al.,  2022). As a food source, 
cottonseed is rich in protein, fat, carbohydrates, and 
minerals, and contains unsaturated fatty acids, which 
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can aid in lowering cholesterol levels and reducing 
the risk of cardiovascular disease (Kumar et  al.,  2021; 
Li et  al.,  2021). The lint percentage of seed cotton is 
closely correlated with both cotton yield and quality, 
with a higher lint percentage serves as a significant 
indicator of increased yield potential. Consequently, 
the lint percentage not only impacts the economic via-
bility of cotton production but also plays a pivotal role 
in the identification and selection of optimal cotton 
varieties. Prioritizing the cultivation of cotton varie-
ties with elevated lint percentages holds the promise of 
enhancing yield outcomes and bolstering overall eco-
nomic returns in cotton farming practices.

Given the significant economic value of both cot-
ton fibre  and cottonseed, the assessment of cotton 
quality is essential for determining its market value, 
and the lint percentage is one of the important factors 
in determining the quality and the price of seed cotton. 
However, the traditional method of measuring lint per-
centage is complex, time-consuming, and requires four 
steps: weighing and recording the seed cotton sample, 
separating lint from the seed cotton sample through 
a cotton gin, weighing and recording the separated 
lint, and finally calculating the lint percentage using 
a professional formula. As the trend towards automa-
tion and intelligence in various industries continues, 
the traditional methods of lint percentage calculation 
have become increasingly obsolete. Previously, a non-
destructive detection method  was proposed for auto-
matically obtaining the lint percentage of seed cotton 
based on optical penetration imaging and machine 
vision. The test results showed that the average accu-
racy of this new method for calculating the lint per-
centage of the H219 and ZHM19 varieties was 96.33% 
and 95.40%, respectively (Geng et  al.,  2022). This 
method offers the advantages of rapid, nondestructive, 
and intelligent detection. The core algorithm of this 
method utilizes three features, image grayscale values, 
perimeter, and area, for the recognition and counting 
of cottonseeds, enabling the computation of the lint 
percentage of seed cotton.

To explore an intelligent and more accurate seed 
cotton lint percentage detection method, this paper 
delves into  a more in-depth nondestructive detection 
investigation based on optical penetration imaging and 
visual deep learning algorithms. Deep learning tech-
niques represent a broad category of machine learning 
methods that have achieved impressive efficacy across 
a wide range of applications (Wang et al., 2020). These 
techniques differ from traditional graph-based meth-
ods because they eliminate the need for expertise in 
feature extraction, which is often a labor-intensive and 

subjective process (Delacre et al., 2017). However, deep 
learning approaches can automatically extract features 
for image classification.

Recently, the application of deep learning algorithms in 
agricultural pest detection and assessment has garnered 
significant attention from the research community. A deep 
residual learning algorithm was proposed to identify pest 
species in crops with a remarkable accuracy of 98.67% 
(Cheng et al., 2017). An image acquisition system based on 
fruit posture adjustment equipment was proposed, and the 
YOLO-v5 algorithm based on deep learning was used to 
study the real-time recognition of the stem/calyx of apples 
(Wang et  al.,  2022). The  efficacy of the MobileNetV2 
deep learning model in recognizing three termite species 
was also examined, with  results indicated that the model 
could recognize the species with an accuracy of 94.7%, 
which was indistinguishable from the accuracy achieved 
by specialists in the field (Huang et  al.,  2021). Addition-
ally,  a deep learning model to identify and classify foliar 
plant diseases using images from public datasets and the 
TensorFlow open source library was proposed, achieving 
an average classification accuracy of 97% on training data-
sets and 92% on test data (Elfatimi et  al.,  2022). The use 
of the VGG16 model for disease classification of tomato 
plant leaves was proposed, and an accuracy of 99.17% was 
achieved (Wagle et al., 2021). In conclusion, these studies 
demonstrated the potential of deep learning algorithms in 
agricultural pest detection and assessment, highlighting 
the importance for further research to improve the accu-
racy and efficiency of these tools.

In industrial applications, deep learning also plays 
an important role. A fault diagnosis model for indus-
trial applications that leverages the lightweight con-
volutional neural network (CNN) MobileNet was 
proposed. This model can diagnose the health status 
of rolling bearings in real time and has demonstrated 
impressive performance, with an accuracy of over 
96% for identifying ten different rolling bearing health 
states (Hu et  al.,  2022). In another study, an improved 
model for mechanical fault diagnosis, named the ReLU-
CNN model, was proposed. The results of experi-
ments indicated that the proposed model exhibits both 
good performance and rapid convergence, making it 
a promising approach for industrial fault diagnosis 
(Qian et al., 2018). The real-time performance and high 
accuracy of the proposed models have the potential 
to significantly impact the maintenance and repair of 
industrial machinery, ultimately leading to increased 
productivity.

This study introduces a novel hardware system 
known as the lint percentage detection system (LPDS), 
which relies on deploying a MobileNetV2 model 



Page 3 of 15Geng et al. Journal of Cotton Research            (2024) 7:16  

trained using transfer learning techniques. LPDS hard-
ware devices help to automate and smarten the lint 
percentage detection process. This system is designed 
to be easily adopted.

Materials and methods
This section presents a detailed description of the steps 
involved in detecting the lint percentage. It is divided 
into several subsections, including image acquisition, 
segmentation of cotton seeds, augmentation and pre-
processing of the dataset images, description of the 
proposed model architecture, training of the CNN, 

classification and performance evaluation, and lint per-
centage calculation. The steps above are detailed below:

Image acquisition
We designed the LPDS hardware, the specific struc-
ture of which is shown in Fig. 1a. The device comprises 
an industrial computer (YanQin0TF-7612  L, i5-4200U, 
Shenzhen, China), a touch-sensitive LCD screen (with a 
screen size of 24.5 × 18.5 cm, a resolution of 1 280 × 720 
pixels, and a refresh rate of 75 Hz), an LED light source 
intensity regulator, and an LED light source (measuring 
323 mm × 323 mm × 7  mm and providing 24  V/43.2  W 
of power). The LED light source is fixed on the top lid 

Fig. 1 Construction of lint percentage detection system (LPDS). a Actual device. b The operation diagram of the LPDS device with samples 
below the white light source. c Transmission images of seed cotton were acquired under white light illumination with a CCD camera
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of the LPDS. The LPDS device is equipped with a black 
compartment (measuring 50 cm × 54 cm × 84 cm), which 
houses a built-in camera (Hikvision MV-CE100-30GC, 
with a sensitivity of 0.8  lx and a resolution of 3 840 × 2 
748) and a conditioning board that is used to adjust the 
position of the camera. The top of the compartment 
has a recess (measuring 319 mm  × 319 mm  × 12  mm) 
to accommodate a piece of clear Plexiglas (measuring 
315 mm × 315 mm × 5  mm), which serves as the image 
acquisition area. The white LED light penetrates the 
seed cotton samples placed on the Plexiglas to acquire 
images, as illustrated in Fig. 1b. The depth of the recess 
is set to 12 mm to avoid stacking seed cotton layers and 
to  improve image quality, given that the thickness of a 
single cotton seed ranges from 4 to 6 mm. The top lid was 
closed to firmly press the seed cotton samples against the 
Plexiglas. This design allows for a reliable and high-qual-
ity image acquisition process.

Segmentation of seed cotton image
The raw image of the seed cotton collected by the LPDS 
is depicted in Fig.  2a. To extract the cotton seeds from 
the original images, a series of image processing algo-
rithms were applied. The first step involved converting 
a red-green-blue (RGB) image into a binary image using 
Otsu thresholding (Otsu, 1979) and reinforcing the edge 
features of the acquisition area (Fig.2b). By applying this 
threshold, the area of image acquisition was obtained 
(Fig. 2c). To prevent loss of features near the edge of the 
image, each boundary of the image acquisition area was 
extended outward by 50 pixels (Fig. 2d). In the next step, 
a dilation operation was applied to expand the area of the 
cotton seed image (Fig.  2e). This expansion linked some 
adjacent cotton seeds together and increased the area of 
extraction, which helped to extract the cotton seed images 
while avoiding loss of features. Subsequently, using a con-
tour-finding algorithm (Suzuki et  al.,  1985), all contours 
of the cotton seed were found (Fig.2f ), and a bounding 
box was applied to frame the cotton seed area using a rec-
tangle as an image mask. Finally, the original image was 
cropped to acquire all cotton seed areas (Fig. 2g).

Augmentation and preprocessing of the dataset images
To overcome the challenge of acquiring a large quan-
tity of training data, typically required by deep learning 
techniques, we employed data augmentation techniques 
to augment the size of our training dataset. By perform-
ing augmentation processing on the dataset, we aimed 
to compensate for the limited quantity of image data 
and improve the performance of our deep CNN model. 
The augmentation procedures consisted of ten differ-
ent combinations: rotation, shear, scaling, adaptive his-
togram equalization, horizontal flipping,  and vertical 

flipping. The dataset consists of a total of 66 924 seed-
cotton images categorized into six categories, which were 
obtained from 102 original images collected in a real-life 
scenario. The original images and dataset are available 
online via the following link: https:// pan. baidu. com/s/ 
1NGu7 YNuTx hSimy wJGMK eJA? pwd= nd3l.

The total dataset was divided into two distinct parts 
to optimize performance of the deep learning model 
employed in this study, with 80% of the data designated 
for training and the remaining 20% reserved for vali-
dation. The distribution of images in each dataset and 
the number of images per category are documented 
in Table  1. Categories A, B, C, D, E, and F represent 
the number of cottonseeds in the image of seed cot-
ton as 0, 1, 2, 3, 4, and 5, respectively. Preprocessing, a 
crucial step in any analysis (Dyrmann et al., 2016), was 
conducted to standardize the image dimensions of the 
dataset to the required input size of 224 × 224 × 3 for 
compatibility with the MobileNetV2 model used. This 
involved adjusting the image size of all images in the 
dataset to the specified dimensions, thereby ensuring 
consistency and efficient operation of the algorithm.

Description of the proposed model architecture
The MobileNetV2 model, developed by the Google 
development team, is optimized for  deployment on 
mobile and embedded devices (Sandler et al., 2018). The 
model parameters are presented in Table2. Compared 
with many other deep CNN models, the MobileNetV2 
model has a smaller volume and faster computational 
speed (Song et al., 2021). The model employs a depth-
wise separable convolution layer, which is divided into 
a depthwise convolution layer and a pointwise convolu-
tional layer. The depthwise layer extracts features from 
the input image, while the pointwise layer merges these 
features. This design not only reduces the model vol-
ume but also decreases computations by approximately 
one-eighth to one-ninth. The structure of the Mobile-
NetV2 model is depicted in Fig.3, with some modifica-
tions made to the fully connected layer, whose output 
dimension was changed from 1 000 to 6 to match the 
6-category division of the dataset.

Training of the convolutional neural network
In this study, two MobileNetV2 models were utilized 
to calculate the percentage of lint in seed cotton. The 
two models were almost identical, differing only in the 
training approach applied. One MobileNetV2 model 
was trained using the transfer learning technique, 
which involves fine-tuning the parameters of a network 
that has been pretrained on a large dataset (Martineau 
et  al., 2018). The other model was trained without 
transfer learning. The MobileNetV2 model trained 

https://pan.baidu.com/s/1NGu7YNuTxhSimywJGMKeJA?pwd=nd3l
https://pan.baidu.com/s/1NGu7YNuTxhSimywJGMKeJA?pwd=nd3l


Page 5 of 15Geng et al. Journal of Cotton Research            (2024) 7:16  

Fig. 2 Procedure for image segmentation of cotton seeds. a The original full image. b A binary image obtained by the Otsu threshold. c The area 
of image acquisition was extracted from the original image. d Each boundary of the image acquisition area was extended outward by 50-pixel 
points. e The cotton seeds near each other were connected, and the area of the cotton seed image was increased by an expansion operation. f All 
the contours were found by the contour finder function. g The cropped images
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with transfer learning was initialized with weights 
obtained from a network pretrained on the ImageNet 
dataset (Deng et  al., 2009), which comprises 1.4  mil-
lion images and 1 000 classes of web images. Both 
models were trained with 64 samples per batch, an 

initial learning rate of 0.01, a momentum factor of 0.9, 
and a total of 600 iterations. The initial learning rate 
was gradually reduced by a factor of 5 after every 100 
training iterations, and the model weights were saved 
every 5 iterations until the end of the training process. 

Table 1 The number of images per category in the dataset

Dataset Number of A 
category

Number of B 
category

Number of C 
category

Number of D 
category

Number of E 
category

Number of 
F category

Training set 8 856 9 312 10 137 9 120 8 511 7 603

Test set 2 214 2 328 2 535 2 280 2 127 1 901

Total number 11 070 11 640 12 672 11 400 10 638 9 504

Fig. 3 The visual representation of the MobileNetV2 model

Table 2 Structural parameters of MobileNetV2

Bottleneck refers to the set of deep separable convolution blocks and residual networks; Bottleneck/1 and Bottleneck/6 represent the expansion factors of the 
number of intermediate channels relative to the input channels of 1 and 6, respectively

Layer number Network layer Input size Stride Number of repeats Number 
of 
channels

1 Conv 1 × 1 224 × 224 × 3 2 1 32

2 Bottleneck/1 112 × 112 × 32 1 1 16

3 Bottleneck/6 112 × 112 × 16 2 2 24

4 Bottleneck/6 56 × 56 × 24 2 3 32

5 Bottleneck/6 28 × 28 × 32 2 4 64

6 Bottleneck/6 14 × 14 × 64 1 3 96

7 Bottleneck/6 14 × 14 × 96 2 3 160

8 Bottleneck/6 7 × 7 × 160 1 1 320

9 Conv 1 × 1 7 × 7 × 320 1 1 1 280
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The accuracy rate and loss rate were recorded at each 
session to monitor the performance of the models.

Classification and performance evaluation
A test dataset was utilized to evaluate the performance 
of the deep learning models for the classification task, 
and four evaluation metrics were employed: accuracy 
rate, precision rate, recall rate, and F1-score. These 
metrics provide insight into the ability of the models to 
accurately classify the data. The equations of these met-
rics are as follows:

The results of the classification task were also repre-
sented through confusion matrices, which depicted the 
correct or incorrect classifications of objects. In the 
matrices,  the diagonal elements in the matrices rep-
resented the correctly classified objects, while the off-
diagonal elements represented the incorrectly classified 
objects. The classification performance was further 
evaluated by computing true positives (TPs), true nega-
tives (TNs), false positives (FPs), and false negatives 
(FNs). These four parameters have been widely used in 
machine learning to assess the performance of classifi-
cation models and provide insights into their behavior. 
The meanings of these four parameters are as follows 
(Sathyanarayana et al., 2016):

• True Positive (TP): positive samples that were cor-
rectly labeled by the classifier,

• True Negative (TN): negative samples that were cor-
rectly labeled by the classifier,

• False Positive (FP): negative samples that were incor-
rectly labeled as positive,

• False Negative (FN): positive samples that were 
incorrectly labeled negative.

According to the evaluation metrics discussed above, 
a comprehensive evaluation of the experimental results 
was carried out. Given that the dataset was composed 
of six classes, the size of the confusion matrix utilized in 
this study was 6 × 6.

(1)Accuracy =
TP+ TN

TP+ FN+ FP+ TN
× 100%

(2)Precision =
TP

TP+ FP
× 100%

(3)Recall =
TP

TP+ FN
× 100%

(4)F1− Score =
2× (Precision× Recall)

(Precision+ Recall)
× 100%

Lint percentage calculation
In the cotton industry, the lint percentage of seed cotton 
(LPOSC) is calculated by the following formula:

where M represents the mass of the seed cotton sam-
ple and m represents the mass of the cotton seed in the 
seed cotton sample. In traditional methods, m is obtained 
by initially separating the seed cotton into cotton seed 
and lint using a cotton gin, and then weighing the cot-
ton seed. In this research, the value of m can be obtained 
using the following equation:

where N represents the total number of cotton seeds 
in the seed sample, which was obtained by the trained 
MobileNetV2 model, and  mavg represents the aver-
age weight of a single cotton seed. Thus, Eq.  (5) can be 
expressed as Eq. (7):

In this study, the cotton varieties GB819 and X1907 
were selected as the research objects.

We randomly sampled the GB819 cotton variety and 
performed measurements and statistics.The statistical 
results showed that the total number of cotton seeds in 
the sample (N) was 2 036, and the average weight of a 
single cotton seed  (mavg) was approximately 0.090 128 g. 
Similarly, for the X19075 variety, N was 2 129, and 
 mavg was approximately 0.100 563  g. In calculating the 
LPOSC, the  mavg for each cotton variety was compiled 
into the computing system as known data. The comput-
ing system could choose to call or not call  mavg, depend-
ing on the specific application. The total seed cotton 
mass (M) was obtained by a weighing sensor, which was 
automatically passed through the LPOSC computing 
system.

Results and discussion
Model training and testing were conducted by using 
the Windows 10 operating system (CPU Intel Core i5 
10600KF, 64 GB RAM, NVIDIA GeForce RTX 3060TI) 
with Python 3.9.9, PyTorch 1.10.2, Torchvision 0.11.3, 
and CUDA 11.4. We used an adaptive moment (Kingma 
et  al.,  2014), estimation as the optimizer, and categori-
cal cross-entropy (De Boer et al., 2005) served as the loss 
function for training classifiers.

The six image categories of the seed cotton in the data-
set used for training the network are depicted in Fig. 4. 

(5)LPOSC =
M−m

M

(6)m = N * mavg

(7)LPOSC =
M−N*mavg

M
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The entire dataset was segmented into six sub-datasets 
based on the number of cotton seeds present in each 
image. Specifically, category A corresponds to images 
containing 0 cotton seeds, category B corresponds to 
images containing 1 cotton seed, category C corresponds 
to images containing 2 cotton seeds, category D cor-
responds to images containing 3 cotton seeds, category 
E corresponds to images containing 4 cotton seeds, and 
category F corresponds to images containing 5 cotton 
seeds. To ensure the accuracy of the model classification, 
the seed cotton images in the dataset were meticulously 
reviewed multiple times to confirm their correctness and 
to  prevent potential decreases in model performance 
resulting from incorrectly classified samples.

The performance curves of the seed cotton image clas-
sification based on MobileNetV2, both without trans-
fer learning and with transfer learning, are displayed in 
Figs. 5 and 6. As the number of training epochs increases, 
the training accuracy of both models increases, while 
the loss function curve decreases downward in a sym-
metrical manner during training. The relatively small gap 
between the training and validation curves indicates that 

the models exhibit strong generalizability and are pro-
ficient in providing accurate predictions for previously 
unseen seed cotton images. After 600 training itera-
tions, the MobileNetV2 model without transfer learning 
achieved an average accuracy of 97.01% with a loss value 
of 0.493 0. The MobileNetV2 model with transfer learn-
ing outperformed its counterpart, with an average accu-
racy of 98.30% and a lower loss value of 0.394 2.

The utilization of a confusion matrix is deemed an 
essential method for evaluating the performance of CNN 
models in image classification (Pan et al., 2020). The con-
fusion matrix provides a clear understanding of the accu-
racy and mode of confusion during the predictions made 
by the model. In the matrix, the rows represent the actual 
categorization of the seed cotton images, while the col-
umns represent the predicted categorization of the seed 
cotton images. As illustrated in Fig.7, the results of the 
seed cotton image classification are presented, where 
the categories are labeled A, B, C, D, E, and F, and the 
scale on the right represents the number of seed cotton 
images.

Fig. 4 Six category images of the seed cotton in the dataset used for training the network
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Fig. 5 Performance of seed cotton image classification based on MobileNetV2 without transfer learning

Fig. 6 Performance of seed cotton image classification based on MobileNetV2 with transfer learning

Fig. 7 Confusion matrix for the MobileNetV2 models. a MobileNetV2 model training without transfer learning. b MobileNetV2 model training 
with transfer learning
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Table  3 presents a binary representation of the 6 × 6 
confusion matrix depicted in Fig.  7. It is important to 
note that the number of test images for each category is 
not equal, leading to unequal values for FNs, FPs, TNs, 
and TPs for each category.

The results of the seed cotton image classification task 
utilizing the two MobileNetV2 models are presented in 
Fig. 8. It is evident that the two MobileNetV2 models dis-
played a robust ability to differentiate between the vari-
ous seed cotton image categories, as evidenced by the 
successful predictions during the testing phase. However, 
in some cases, similar images from categories A and B 
were misclassified, as shown in Fig. 7a. This misclassifica-
tion occurred due to the similarities between the two cat-
egories, resulting in a miscalibration in the MobileNetV2 
model without transfer learning.

The presentation of image features is important for 
the analysis of seed cotton images. MobileNet uses the 
k-nearest neighbor (kNN) algorithm, which uses the 
semantic information represented in the logits to com-
pare the images in the dataset and unknown samples as 
the classifier (Ong et  al.,  2021); Howard et  al.,  2017)). 
To ensure an accurate representation of seed cotton 
morphological features, a controlled environment was 
established to develop the model. Stringent measures 
were taken to standardize the lighting intensity and 
sample  camera distance, thereby minimizing potential 
sources of error.

The performance of the proposed classification sys-
tem was evaluated using four widely recognized met-
rics: accuracy, precision, recall, and F1-score (Assi 
et  al.,  2010). The evaluation results are presented in 
Table4. Both proposed models demonstrated satisfac-
tory performance, with the MobileNetV2 model without 

transfer learning achieving a mean accuracy, precision, 
recall, and F1-score of 97.92%, 93.98%, 93.83%, and 
93.88%, respectively. However, the MobileNetV2 model 
incorporating transfer learning demonstrated signifi-
cantly improved results, with a mean accuracy, preci-
sion, recall, and F1-score of 98.43%, 94.97%, 95.26%, and 
95.20%, respectively.

The receiver operating characteristic (ROC) curves 
of the two proposed models are depicted in Fig.  9, 
where the horizontal axis represents the true posi-
tive rate (TPR) and the vertical axis represents the 
false positive rate (FPR). The results show a high TPR 
and a  low FPR, indicating that the proposed models 
exhibit strong image recognition abilities for seed cot-
ton images. Furthermore, a comparison of the ROC 
curves reveals that the model incorporating transfer 
learning exhibits improved classification performance, 
as demonstrated by a larger area under the curve com-
pared with the model without transfer learning. This 
suggests that the MobileNetV2 model trained  with 
transfer learning technique has superior classification 
capability.

In this study, the MobileNetV2 model incorporating 
transfer learning techniques was deployed on an LPDS 
device for LPOSC calculations. A test group consisting 
of twenty groups, each of the cotton varieties GB819 
and X19075, was used to assess the model’s reliability. 
To further evaluate the dependability of the model, the 
same 40 groups of seed cotton samples were subjected 
to lint percentage determination with the assistance 
and guidance of professionals from the Fiber Inspection 
Bureau in Henan Province. The results of the LPOSC 
calculations performed by the proposed model are 

Table 3 Formation of binary for the confusion matrix

TP true positive; TN true negative; FP false positive; FN false negative

Name of class Process TP FP TN FN

A MobileNetV2 without transfer 
learning

791 65 3 466 37

B 839 82 3 369 69

C 508 25 3 799 27

D 725 9 3 570 55

E 662 54 3 598 45

F 562 37 3 721 39

A MobileNetV2 with transfer 
learning

803 28 3 503 25

B 868 22 3 429 40

C 511 44 3 780 24

D 731 33 3 546 49

E 669 28 3 624 38

F 572 50 3 708 29
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Fig. 8 Visualization results of the seed cotton dataset for an input size of 224 × 224 × 3. a MobileNetV2 model training without transfer learning. 
b MobileNetV2 model training with transfer learning
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presented in Table 5, while the results obtained by the 
LPOSC detection institution are provided in Table 6.

Figure  10 shows the accuracy of the MobileNetV2 
model in determining the lint percentage for the 40 
groups of samples. Upon deployment of the Mobile-
NetV2 model on an industrial computer, the model 
achieved an accuracy of 97.22%. Although the model 
performance was slightly inferior to human detection, an 
independent sample t-test (t = 0.019, P = 0.860) revealed 
no statistically significant differences in accuracy 
between the two methods. These results indicate that the 
proposed method performs comparably to human detec-
tion in determining the lint percentage.

Conclusion
In this study, we explored the use of white light as a 
transmitted light source for seed cotton image analysis. 
Furthermore, a nondestructive detection system to deter-
mine the lint percentage of seed cotton was developed, 
using the MobileNetV2 architecture and transfer learning 
techniques. The system was trained on seed cotton images 
and evaluated using various metrics, such as accuracy and 
F1-score. The results of the experiments indicated that the 
optimal classifier achieved an accuracy of 98.43% and an 
F1-score of 95.20%. Furthermore, the deployment of the 
proposed model to an industrial computer for lint per-
centage calculation resulted in an accuracy of 97.22%.

In conclusion, based on the white light penetrating 
imaging, we introduced a novel method for detecting the 

Table 4 Results of the evaluation of the MobileNetV2 method on different classes of the applied dataset

Model Classes Accuracy /% Precision /% Recall /% F1-Score /%

MobileNetV2 with-
out transfer learning

A 97.66 92.41 95.53 93.94

B 96.54 91.10 92.40 91.75

C 98.81 95.31 94.95 95.13

D 98.53 98.77 92.95 95.77

E 97.73 92.46 93.64 93.05

F 98.26 93.82 93.51 93.66

Average 97.92 93.98 93.83 93.88

MobileNetV2 with transfer 
learning

A 98.78 96.63 96.98 96.80

B 98.58 97.53 95.59 96.55

C 98.44 92.07 95.51 93.76

D 98.12 95.68 93.72 94.69

E 98.48 95.93 94.56 95.44

F 98.19 91.96 95.17 93.94

Average 98.43 94.97 95.26 95.20

Fig. 9 ROC curves for different approaches. a ROC curve for MobileNetV2 without transfer learning. b ROC curve for MobileNetV2 with transfer 
learning
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Table 5 Lint percentage calculated by the MobileNetV2 model

Variety Group Total weight /g Cotton seed 
number

Lint 
percentage 
/%

Variety Group Total weight /g Cotton seed 
number

Lint 
percentage 
/%

GB819 1 17.9 119 40.08 X19075 21 15.0 79 47.04

GB819 2 13.4 80 46.19 X19075 22 23.5 123 47.36

GB819 3 12.6 81 42.06 X19075 23 18.8 104 44.34

GB819 4 15.1 96 42.70 X19075 24 18.5 102 44.55

GB819 5 13.8 90 41.22 X19075 25 15.3 83 45.44

GB819 6 14.6 93 42.59 X19075 26 22.1 120 45.40

GB819 7 17.6 115 41.11 X19075 27 12.9 68 47.10

GB819 8 16.8 103 43.05 X19075 28 15.9 85 46.24

GB819 9 25.8 161 43.76 X19075 29 16.8 91 45.53

GB819 10 13.9 88 42.94 X19075 30 15.1 82 45.39

GB819 11 17.7 112 42.97 X19075 31 13.4 76 42.96

GB819 12 15.3 114 42.85 X19075 32 24.7 135 45.04

GB819 13 15.3 93 45.22 X19075 33 22.0 119 45.60

GB819 14 11.8 72 45.00 X19075 34 17.2 95 44.46

GB819 15 12.8 83 41.56 X19075 35 19.5 106 45.33

GB819 16 15.6 103 40.49 X19075 36 22.8 120 47.07

GB819 17 21.3 136 42.45 X19075 37 22.2 121 45.19

GB819 18 19.0 120 43.08 X19075 38 31.1 165 46.65

GB819 19 13.8 92 39.91 X19075 39 28.2 150 47.57

GB819 20 11.9 75 43.20 X19075 40 18.0 98 45.25

Table 6 Lint percentage calculated by the LPOSC detection institution

Variety Group Total weight /g Cotton seed 
weight /g

Lint 
percentage 
/%

Variety Group Total weight /g Cotton seed 
weight /g

Lint 
percentage 
/%

GB819 1 17.9 10.9 39.11 X19075 21 15.0 7.6 49.33

GB819 2 13.4 7.6 43.28 X19075 22 23.5 12.9 45.11

GB819 3 12.6 7.5 40.48 X19075 23 18.8 10.2 45.74

GB819 4 15.1 8.8 41.72 X19075 24 18.5 9.9 46.49

GB819 5 13.8 8.0 42.03 X19075 25 15.3 8.4 45.10

GB819 6 14.6 8.1 44.52 X19075 26 22.1 11.9 46.15

GB819 7 17.6 10.6 39.77 X19075 27 12.9 7.0 45.74

GB819 8 16.8 9.3 44.64 X19075 28 15.9 8.3 47.80

GB819 9 25.8 14.4 44.19 X19075 29 16.8 9.4 44.05

GB819 10 13.9 7.8 43.88 X19075 30 15.1 8.3 45.03

GB819 11 17.7 10.3 41.81 X19075 31 13.4 7.5 44.03

GB819 12 15.3 8.8 42.48 X19075 32 24.7 14.0 43.32

GB819 13 15.3 8.7 43.14 X19075 33 22.0 11.9 45.91

GB819 14 11.8 6.5 44.92 X19075 34 17.2 9.2 46.51

GB819 15 12.8 7.3 42.97 X19075 35 19.5 10.7 45.13

GB819 16 15.6 9.1 41.67 X19075 36 22.8 12.4 45.61

GB819 17 21.3 12.4 41.78 X19075 37 22.2 12.4 44.14

GB819 18 19.0 11.1 41.58 X19075 38 31.1 17.0 45.34

GB819 19 13.8 8.3 39.86 X19075 39 28.2 15.5 45.04

GB819 20 11.9 6.6 44.54 X19075 40 18.0 9.6 46.67
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lint percentage utilizing MobileNetV2 and transfer learn-
ing techniques. To the best of our knowledge, limited 
research exists on the nondestructive detection of the per-
centage of seed cotton lint. Therefore, this study provides 
a new feasible approach to fill this gap, and the results 
show that this method holds potential for enhancing auto-
mation and intelligence in the cotton industry.
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