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Abstract 

Background  Plant hormones profoundly influence cotton growth, development, and responses to various stresses. 
Therefore, there is a pressing need for an efficient assay to quantify these hormones in cotton. In this groundbreak-
ing study, we have established QuEChERS-HPLC‒MS/MS method, for the simultaneous detection of multiple plant 
hormones in cotton leaves, allowing the analysis and quantification of five key plant hormones.

Results  Sample extraction and purification employed 0.1% acetic acid in methanol and C18 for optimal recov-
ery of plant hormones. The method applied to cotton demonstrated excellent linearity across a concentration 
range of 0.05–1 mg·L−1, with linear regression coefficients exceeding 0.99. The limits of quantification (LOQs) were 
20 μg·kg−1 for GA3 and 5 μg·kg−1 for the other four plant hormones. Recovery rates for the five plant hormones matrix 
spiked at levels of 5, 10, 100, and 1000 μg·kg−1 were in the range of 79.07% to 98.97%, with intraday relative stand-
ard deviations (RSDs) ranging from 2.11% to 8.47%. The method was successfully employed to analyze and quantify 
the five analytes in cotton leaves treated with plant growth regulators.

Conclusion  The study demonstrates that the method is well-suited for the determination of five plant hormones 
in cotton. It exhibits excellent selectivity and sensitivity in detecting field samples, thus serving as a robust tool for in-
depth research into cotton physiology.
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Background
Plant hormones are vital signaling molecules produced 
by plant cells in response to specific environmental 
cues, orchestrating diverse physiological processes 
throughout plants’ life cycle. These functions encom-
pass activities such as cell division, organ development, 
seed dormancy, germination, organ senescence, and 
abscission, which are  pivotal in plant growth, develop-
ment, metabolism, and responses to biotic and abiotic 
stressors (Liu et  al.,  2019; Jiang et  al.,  2020). The rec-
ognized plant hormones include growth hormone, 
cytokinin (CK), abscisic acid (ABA), gibberellin (GA), 
Brassinosteroid (BR), salicylic acid (SA), jasmonic acid 
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(JA), ethylene (ET), and more recently discovered str-
igolactones (SL) (Bowman et al., 2019). Plant hormones 
do not act alone, exhibiting intricate interactions among 
each other, including synergistic and antagonistic  rela-
tionships (Wang et al., 2020c). This results in a compre-
hensive and coordinated regulation of plant growth and 
development, which is hormone concentration depend-
ent (Li et al., 2019; Wu et al., 2009).

Cotton, as the world’s predominant fiber crop, 
representing nearly 40% of global fiber production, 
has long been a focal point of plant research (Wu 
et  al.,  2020). When cotton is stressed by unfavour-
able external conditions, phytohormones sense and 
promptly regulate its response to  the external influ-
ences (Wang et  al.,  2022). Previous studies by Guinn 
et  al., (1993) suggested that elevated ABA levels, 
reduced  indole acetic acid (IAA), and decreased sto-
matal conductance mediated by zeatin-riboside (ZR) 
in cotton can attenuate plant metabolism, thereby 
minimizing stress-induced losses. Likewise, Zhang  et 
al., (2017) revealed that numerous gene were deferen-
tially expressed with upregulated hormones such as 
JA, SA, and BR in response to waterlogging in cotton. 
Furthermore, Nguyen  et al.’s hypothesis posited that 
JA, SA, and BR acted in a signaling cascade network, 
aiding plants in adapting to abiotic stresses (Nguyen 
et al., 2016). Thus, fluctuations in plant hormone con-
centrations and their intricate interactions are pivotal 
in cotton’s adaptation to the challenging conditions 
(Zhang et al., 2021).

Detecting plant hormones is a formidable task given 
their trace amounts. Analyzing these substances 
necessitates complex pretreatment and precise instru-
mentation (Wang et  al.,  2020; Bari et  al.,  2009). Cur-
rently, commonly employed techniques for hormone 
detection encompass electrochemical analysis, immu-
noassays, chromatography, and chromatography/mass 
spectrometry (Cao et  al.,  2023). Immunoassays are 
straightforward and suitable for assessing plant hor-
mones across various species. However, cross-contam-
ination issues among different hormones may result in 
false positives (Tan et  al.,  2016). In recent years, liq-
uid chromatography–mass spectrometry (LC–MS) has 
emerged as a favored method for quantitative phyto-
hormone analysis (Lin et al., 2020). Its high sensitivity, 
specificity, and ability to concurrently analyze multiple 
hormones offer a powerful tool for both quantitative 
and qualitative assessment at tissue and cellular levels 
(Antoniadi et  al.,  2015; Verslues,  2017). When com-
pared with gas chromatography, LC–MS can bypass 
complicated derivatization processes, making it the 
premier choice for phytohormone detection (Jiang 

et al., 2020). To date, HPLC–MS/MS has been applied 
for the quantification of various phytohormones such 
as auxin, ABA, CKs, and SLs simultaneously (Šimura 
et  al.,  2018; Jiang et  al.,  2020; Cao et  al.,  2016; Xin 
et al., 2020; Wu et al., 2009).

Regardless of the detection method employed, 
pretreatment steps are indispensable for purifying 
plant substrates, eliminating impurities, and enrich-
ing target compounds (Wu et al., 2009). Various pre-
treatment techniques have been adopted, including 
dispersed liquid–liquid microextraction (DLLME) 
(Behbahani et al., 2014), solid phase extraction (SPE) 
(Wang et  al.,  2007), solid phase microextraction  
(SPME), liquid extraction (LPE) (Uslu et  al.,  2016), 
ultrasonic extraction (UE) (Roknul Azam et al., 2020),  
microwave-assisted extraction (MAE) (Fang et  al., 
2012), accelerated solvent extraction (ASE) (Wang 
et  al.,  2020a), liquid phase microextraction (LPME) 
( Jalili et  al.,  2020), and supercritical fluid extrac-
tion (SFE) (Ngowi et al., 2007). Among these, SPE is 
the most commonly utilized method for extracting 
plant hormones (Hou et al., 2008; Dobrev et al., 2005; 
Ivanov Dobrev et  al.,  2002). Nevertheless, the intri-
cate nature of the pretreatment process translates to  
longer preparation times, rendering it impractical for  
large-scale phytohormone assays (Musarurwa et  al., 
2019; Lee et  al.,  2018; Rahman et  al.,  2018b; Nuapia 
et al., 2016). In this context, the QuEChERS pretreat-
ment method has emerged as a superior alterna-
tive. This approach simplifies the process, reducing 
sample preparation steps to just two, and has gained 
prominence due to its capability to extract polar 
analytes, offering improved selectivity, detectability, 
and direct compatibility with liquid chromatography 
coupled with mass spectrometry, reduced extraction 
solvent and sample preparation time requirements, 
and superior recovery rates (Zhang et al., 2014; Rong 
et al., 2018; Lehotay et al., 2010).

The quantification of plant hormones in cotton is 
a challenging endeavor owing to their inherently low 
concentrations. There exists a pressing need for com-
prehensive research to develop methods that enable 
the simultaneous detection of multiple plant hormones 
in cotton. The primary objective of this study was to 
devise an analytical approach characterized by its 
simplicity, convenience, affordability, sensitivity, and 
remarkable selectivity. This method was subsequently 
applied to authentic cotton samples, facilitating the 
precise, in-depth, and quantitative assessment of plant 
hormones. These findings are expected to significantly 
contribute to advancing physiological studies in cotton 
and related areas.
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Materials and methods
Chemicals and reagents
Analytical standards for zeatin (HPLC ≥ 96%), zeatin 
riboside (HPLC ≥ 96%), indole acetic acid (HPLC ≥ 98%), 
gibberellin A3 (HPLC ≥ 90%), and abscisic acid 
(HPLC ≥ 98%) were purchased from Shanghai Yuanye 
Bio-Technology Co Ltd.  (Shanghai, China), 2,6-di-tert-
butyl-4-methylphenol (BHT) was purchased from Shang-
hai Aladdin Bio-Chem Technology Co.  (Shanghai, 
China), ultrapure water was prepared using a Milli-Q 
water purification system (Millipore, USA), HPLC-grade 
acetonitrile, methanol, formic acid, and acetic acid were 
purchased from Merck (Merck KGaA, Darmstadt, Ger-
many). Analytical grades of magnesium sulfate anhydrous 
(MgSO4) were obtained from Beijing Chemical Company 
(Beijing, China). Primary secondary amine (PSA, 40 μm), 
Cleanert C18 (C18, 40 μm), and graphitized carbon black 
(GCB, 40 μm) were purchased from Bonna-Agela Tech-
nologies (Tianjin, China). Syringe filters (0.22 μm, nylon) 
were purchased from the Youpu Reagent Company 
(Tianjin, China).

HPLC‒MS/MS analysis
Chromatographic separation of zeatin (ZT), zeatin ribo-
side (ZR), indole-3-acetic acid (IAA), gibberellin A3 
(GA3), and abscisic acid (ABA) was performed on an 
ExionLC™ AC (AB Sciex) and SCIEX Triple Quad™ 4500 
(AB Sciex) equipped with a Shim-pack GIS C18 column 
(150 mm × 3.0 mm, 3 μm particle size, Kyoto, Japan). The 
mobile phase consisting of 0.1% acetic acid in methanol 
(Phase A) and 0.1% formic acid in ultrapure water (Phase 
B) was pumped at a flow rate of 0.3 mL min-1. The gradi-
ent elution program was as follows: 0.0 – 1.0  min, 95% 
B; 1.0 – 3.0 min, 95% – 5% B; 3.0 – 4.5 min, 5% B; 4.5 – 
4.6 min, 5% – 95% B; 4.6 – 6.0 min, 95% B, equilibration 
of the column. The column oven temperature was main-
tained at 40 ℃, and the temperature in the autosampler 
was set at 15 ℃. The sample volume injected was 4 μL.

Mass spectrometry analysis was conducted using an 
AB SCIEX Triple Quad™ 4500 equipped with an electro-
spray ionization source (ESI). Multiple reaction monitor-
ing (MRM) was in positive mode (ESI +) for ZR and ZT, 
and IAA was in negative mode (ESI-) for GA3 and ABA. 
The typical MS/MS instrument basic parameter settings 
are shown in Table S1. Analyst 1.6.3 software (AB Sciex 
Corp., USA) and SCIEX OS-Q (AB Sciex Corp., USA) 
were utilized for instrument control, data acquisition, 
and analysis.

Plant material and overview of the experimental site
Cotton for method optimization and validation (Gos-
sypium hirsutum  L.)  was planted at Dongchang 
experimental site of Institute of Cotton Research, 

Chinese Academy of Agricultural Sciences (Anyang, 
Henan,  China). Cotton was planted in equal spacing, 
80  cm between rows and 25  cm between plants, with 
a planting density of 50 000 plants·hm–2. The experi-
ment was carried out from the early to full flowering 
stage of cotton. The experiment was carried out from 
the early flowering stage to the full flowering stage of 
cotton, and no other plant growth regulators other 
than the formula were sprayed in the experimental 
plots. Other management measures were the same as 
those in the field.

The experiment was started on July 5, 2023, and fresh 
cotton leaves were picked at 0, 14, and 28 days post plant 
growth regulator treatment and frozen in liquid nitrogen 
immediately after picking. All samples were harvested 
within 1 day.

Sample extraction and purification
The QuEChERS pretreatment consists of two main 
steps: liquid‒liquid extraction and dispersive solid-
phase extraction cleanup (Musarurwa et  al.,  2019). 
Fresh cotton leaves were collected at Dongchang 
Experimental Station of Institute of  Cotton Research 
Institute, Chinese Academy of Agricultural Sciences 
(CAAS). They were cold-excited with liquid nitro-
gen and stored at –80  °C immediately after picking. A 
cotton leaf sample of 2.5 g (± 0.05 g) was weighed in a 
50 mL polytetrafluoroethylene centrifuge tube, ground 
and pulverised using a grinder. Then, 7.5 mL of metha-
nol solution containing 0.1% acetic acid (containing 
1 mmol·L−1 BHT) and 0.25 mL of ultrapure water were 
added. The extract was homogenized using a high-
speed homogenizer for 1  min and then centrifuged 
at RCF (relative centrifugal force) 5 000 × g for 5  min. 
Next, 1.5  mL of supernatant was transferred from the 
centrifuge tube to a 2  mL tube (containing 150  mg 
MgSO4 and 30 mg C18) using the vortex mixer vortex 
for 1  min. Ultimately, after centrifuging for 5  min at 
RCF 4 000 × g, the upper acetonitrile layer was filtered 
through 0.22 μm nylon syringe filters into autosampler 
vials for HPLC‒MS/MS analysis.

Method validation
The method was evaluated for selectivity, linearity, matrix 
effect, limit of quantification (LOQ), limit of detection 
(LOD), accuracy, precision, and stability. Untreated cot-
ton leaves were analyzed to verify the absence of inter-
fering peaks around the retention times of the five target 
compounds to assess their selectivity. The linearity of the 
method was assessed by analyzing solvent standard solu-
tions and matrix standard solutions (5 ~ 1 000  μg·L−1). 
The slopes of the matrix standard solutions were calcu-
lated as follows:
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A is the peak area of the spiked matrix solution, B is 
the peak area of the blank matrix standard, and X is the 
spiked concentration.

The following equation determines the matrix effect:

Slope A is the slope of the matrix standard curve, and 
Slope B is the slope of the solvent standard curve.

The LOQ was the lowest spike level of the validation 
satisfying the criteria. The LODs of the five compounds 
were considered to be the concentration that produced a 
signal-to-noise (S/N) ratio of 3. It was estimated from the 
chromatogram corresponding to the lowest point used in 
the matrix-matched calibration (S/N = 3). The accuracy 
and precision of the method were assessed by validat-
ing the recoveries. Five replicates of each spiked cotton 
leaf sample at four levels (0.005, 0.01, 0.1, and 1 mg·kg −1) 
were prepared on three different days. The precision in 
these conditions for repeatability, expressed as the RSD, 
was determined by the intra- and inter-day assays.

The stability of these four compounds was determined 
in solvent and matrix. The stability of the stock solu-
tions was tested monthly by injection of a newly pre-
pared working solution. Matrix-matched standards of 
0.01  mg·mL−1 were analysed monthly, and all samples 
were stored at 20 ℃.

Application to field cotton samples
In order to investigate the impact of various plant 
growth regulators on the modulation of plant hor-
mones in cotton, an array of treatment combinations 
was designed. These treatments were labeled as follows, 
DD: mepiquat + diethyl aminoethyl hexanoate; DB: mepi-
quat + 24-epibrassinolide; DP: mepiquat + prohexadi-
one calcium; DPC: mepiquat; DA: diethyl aminoethyl 
hexanoate; BR: 24-epibrassinolide; PC: prohexadione 
calcium; CK: water treatment. All plant growth regula-
tors were applied at the recommended field application 
doses, with mepiquat at 45  g·hm−2, diethyl aminoe-
thyl hexanoate at 120  mL·hm−2, 24-epibrassinolide at 
120 g·hm−2, and prohexadione calcium at 450 mL·hm−2.

Results
Optimization of HPLC‒MS/MS conditions
The negative ions GA3 and ABA exhibited low response 
strength in this experiment, making them challenging 
to detect. As a result, we chose methanol as the organic 
phase. Our findings indicated that the five target com-
pounds could not be adequately separated using a mobile 

Slope =
A− B

X

Matrix effect(%) =
Slope A− Slope B

Slope B
× 100%

phase combination of methanol and water. However, 
we discovered that the addition of formic acid and ace-
tic acid to the water at concentrations of 1% and 0.1%, 
respectively, allowed for successful preparation (Fig.  1). 
Despite this, the response values did meet the test 
requirements. To address this, we experimented with 
adding formic acid and acetic acid to methanol at con-
centrations of 1% and 0.1%. A comparison showed that 
using 0.1% acetic acid in methanol as the organic phase 
improved the recovery of the five target compounds. In 
comparison to methanol and pure water, the final choice 
of a mobile phase combination consisting of 0.1% acetic 
acid in methanol and 0.1% formic acid in water provided 
superior peak shapes, greater sensitivity, and a more 
stable baseline. This enhanced the ability to quantify 
peak areas in the experiment (Fig.  2). Consequently, we 
established a comprehensive HPLC‒MS/MS analytical 
method for determination.

The basic mass spectrometer instrument parameters 
include: Curtain gas (CUG), ion spray voltage (IS), ion 
source temperature (TEM), collision energy (CE), spray 
gas (ions source gas, GS1), auxiliary heater (ions source 
gas, GS2), collision gas (CAD), cell exit potential (CXP), 
and specific settings of each parameter are shown in 
Table S1.

In this research, we focused on optimizing instrumen-
tal acquisition parameters and MRM ion-pairing chan-
nel selection to monitor plant hormones. The detection 
of the five target compounds involved the use of mixed 
standard solutions (0.1 mg·L−1) in ESI + ionization mode. 
We initially conducted a primary mass spectrometry 
(MS) scan to obtain precise parent ions. Subsequently, 
a secondary MS scan was performed for the five target 
compounds to identify the daughter ions of each target 
component. For qualitative or quantitative purposes, 
we selected the two ions with the highest response and 
greatest stability. Optimization of ionization parameters 
for each compound included adjustments to the declus-
tering potential (DP), collision energy (CE), and ESI 
source temperature. The optimized mass spectrometry 
parameters for the compounds are detailed in Table 1.

Extraction optimization
In this experiment, we examined the recoveries of six 
different methanol-based extraction solutions for ZR, 
ZT, IAA, GA3, and ABA. The specific recoveries are pre-
sented in Fig.  3, which illustrates that the inclusion of 
2,6-di-tert-butyl-4-methylphenol, also known as butyl-
ated hydroxytoluene (BHT), led to enhanced recover-
ies of the three plant hormones by 0.75% to 9.02% when 
compared with extractions using pure methanol alone. 
Furthermore, the addition of an acidic solution contrib-
uted to the recovery efficiency. In order to determine the 
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most effective extraction protocols for the five plant hor-
mones in cotton, we compared the effects of four different 
extraction protocols: 0.1% acetic acid in methanol solu-
tion + BHT, 1% acetic acid in methanol solution + BHT, 
0.1% formic acid in methanol solution + BHT, and 1% 

formic acid in methanol solution + BHT. The results indi-
cated that the extraction efficiency of 0.1% acetic acid in 
methanol solution + BHT surpassed that of other three 
options, resulting in a 2.45% increase in recovery effi-
ciency when compared with the use of methanol + BHT. 

Fig. 1  Effect of different combinations of aqueous phase as mobile phase on the recovery: A 0.1% formic acid in water. B 1% formic acid in water. C 
0.1% acetic acid in water. (D) 1% acetic acid in water

Fig. 2  Effect of methanol of different acid solutions on the recovery: A 0.1% acetic acid methanol. B 1% acetic acid methanol. C 0.1% formic acid 
methanol. D 1% formic acid methanol



Page 6 of 14Wang et al. Journal of Cotton Research            (2024) 7:18 

This comprehensive assessment established 0.1% acetic 
acid in methanol solution + BHT as the optimal extrac-
tion solution for this experiment. The chosen solution 
demonstrated a significant improvement, with recover-
ies in cotton improved by 2.45% to 25.46% in contrast to 
methanol alone.

Clean‑up optimization
In this investigation, various adsorbents were paired 
with different amounts, including 30, 50, 80, and 100 mg, 
alongside 150  mg of water adsorbent MgSO4, and the 
findings are presented in Fig. 4. Notably, all combinations 

involving MgSO4 with graphitized carbon black (GCB) 
and primary secondary amine (PSA) failed to meet the 
recovery requirements set for this study. The sole excep-
tion was the combination of 150 mg MgSO4 and 30 mg of 
C18, which yielded recoveries exceeding 80% for all five 
target compounds. As a result, 150 mg MgSO4 and 30 mg 
C18 was chosen as the preferred purification agent for 
this test compound.

Method validation
Specificity
To evaluate the specificity of the method, seven blank 
matrix samples were spiked at a concentration of 
100  μg·L−1. The results, as depicted in Fig.  5, revealed 
the absence of any interfering peaks near the retention 
time of the target analyte in all samples. Additionally, 
to assess the method’s stability and reliability, matrix-
matched standard working solution with a concentration 
of 100 μg·L−1 was subjected to monthly analysis.

Linearity and matrix effects
In this research, we conducted seven-point calibration 
curves for five different plant hormones across the con-
centration range of 5 to 1 000 μg·L−1. The coefficient of 
determination (R2) values for all five analytes exceeded 
0.99, indicating a remarkably strong linear relationship 
(Table 2).

As a general rule, matrix effects (ME) within the range 
of –20% to 20% are typically considered negligible. 

Table 1  MS/MS parameters for multiple reaction monitoring 
(MRM)

Compound Ion source Precursor 
(m/z)

Product 
(m/z)

DP /V CE /V

ZR ESI +  352.2 220.0 100 27

136.1 42

ZT ESI +  220.3 136.1 77 23

202.0 18

IAA ESI +  176.2 130.0 24 20

102.9 42

GA3 ESI- 345.1 143.0 80 46

221.1 35

ABA ESI- 263.3 152.8 53 15

219.0 19

Fig. 3  Recovery of five analytes spiked at 100 μg·kg−1 in different extraction solutions (n = 3). The effect of different extraction solutions 
on the recovery of methanol-based extracts with the addition of antioxidants or the adjustment of acidity was examined
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However, when ME falls between –20% and –50% or 
between 20% and 50%, it signifies a moderate level of 
matrix interference.

The detailed results are presented in Table  2. It is 
noteworthy that, except ABA, all four plant hormones 
exhibited matrix inhibitory effects. The effects varied in 
intensity, with milder matrix inhibitory effects observed 
for ZT and GA3, more pronounced matrix inhibitory 
effects for ZR and IAA. On the contrary, ABA shows a 
strong matrix-enhancing effect.

LOQ and LOD
We determined the limit of detection (LOD) and limit 
of quantification (LOQ) by examining the lowest spiked 
cotton leaf samples and calculating signal-to-noise ratios 
equal to 3 and 10, respectively. Consequently, the LOQs 
for this method were found to be 5 μg·kg−1 for ZR, ZT, 
IAA, and ABA, while GA3 had an LOQ of 20  μg·kg−1 
(Table 2). The LODs for ZR, ZT, IAA, GA3, and ABA in 
cotton leaves fell within the range of 0.09 to 0.27 μg·kg−1.

Accuracy and precision
The method’s effectiveness was assessed through a three-
day recovery test, involving the addition of four forti-
fied concentration levels of compounds (5, 10, 100, and 
1 000  μg·L−1) to blank samples. To validate the meth-
od’s precision, both intraday relative standard devia-
tion (RSDr) and inter-day RSD (RSDR) were thoroughly 
examined. The results, as presented in Table 3, revealed 
that the recoveries of the five plant hormones fell within 
the range of 79.07% to 98.97%. The range of RSDr (n = 5) 

and RSDR (n = 15) was determined to be 2.11% to 8.47% 
and 1.07% to 14.64%, respectively. These values indicate 
a remarkable level of precision, with consistent and reli-
able results achieved both within the same day and over 
multiple days. The study demonstrated that the method 
performed exceptionally well in terms of recoveries, pre-
cision, and sensitivity for the determination of the five 
plant hormones in cotton leaves.

Application to real samples
The results at 28 days after application are shown in Fig. 6, 
the GA3 content in the plant growth-regulator treated 
groups exhibited a notable increase, ranging from 11.37% 
to 42.03% compared with CK. All treatments used in 
combination had higher IAA content than all individually 
applied treatments except DPC, and DB having the high-
est IAA content. On day 14 after treatments, the ABA 
content of the DP treatment was significantly lower than 
that of other treatments, and this continued until day 28, 
when the ABA content of the CK group was higher than 
that of all treatment groups, but only significantly differ-
ent from that of the DP group. The variations in ZT con-
tent among the treatment groups were relatively minor. 
Only the DB treatment in 28 days was significantly lower 
than the single treatment BR, but there was no significant 
difference between it and CK. The findings suggest that 
the application of plant growth regulators increases the 
GA3 content of cotton while retarding its ABA content, 
effectively stimulates reproductive growth and impedes 
the senescence of cotton plants.

Fig. 4  The recovery of five analytes spiked at 100 μg·kg−1 with different adsorbents. 150 mg of MgSO4 was mixed with 30, 50, 80, and 100 
mg of C18, PSA and GCB, respectively, as adsorbents to complete the pre-treatment process, and the recovery was compared with determine 
the optimal adsorbent agent
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Fig. 5  Retention time and peak shape of five plant hormones. No interference peaks existed near the retention times of the five phytohormones, 
proving that the stability of the method met the experimental requirement
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Comparison between HPLC‒MS/MS and reported analytical 
methods
To assess the analytical performance of the established 
HPLC‒MS/MS methods in comparison to earlier chro-
matographic analysis  techniques, we have detailed the 
parameters of the prior methods in Table 4. This analy-
sis reveals that when contrasted with the preceding 
approaches, this test offers a simplified pretreatment 
process, a significant reduction in detection time, and 
the ability to separate and detect all five target com-
pounds within a mere 6-min timeframe. Furthermore, 
the recoveries achieved within the linear range of 5 to 1 
000  ng·mL−1 exhibited substantial improvement, with 
recovery ranging from 50.3% to 96.7% compared with the 

previous assay. In summary, this study presents an inno-
vative approach that considerably reduces time required 
for the detection of five target compounds while deliver-
ing highly satisfactory recovery rates.

Discussion
Development of a HPLC–MS/MS method 
for the determination of multiple plant hormones in cotton
Prior research has underscored the significant influence 
of varying mobile phase compositions on ESI ioniza-
tion, an effect even more substantial than the inherent 
detection limit of the instruments (Cho et  al.,  2013). 
The chromatographic analysis of plant hormones typi-
cally involves the amalgamation of water, methanol, or 
acetonitrile, with the addition of an acidic component 
as the mobile phase (Cai et  al.,  2015). Prior investiga-
tions have confirmed methanol as a suitable solvent 
for ESI–MS analysis of acidic compounds in negative 
ionization mode (Huffman et  al.,  2012). However, dur-
ing this experiment, it was discovered that utilizing 
only methanol and deionized water as the mobile phase 
failed to achieve complete separation of the five target 
compounds. Notably, the addition of 0.1% formic acid 
to deionized water facilitated the complete separation 
of all five target compounds. Furthermore, the incor-
poration of 0.1% acetic acid into methanol led to a sig-
nificant enhancement in recovery rate. Ultimately, the 
mobile phase of the combination of 0.1% acetic acid in 
methanol + 0.1% formic acid in water produced excel-
lent separations, yielded optimal chromatograms, and 
exhibited high MS/MS responses.

HPLC‒MS/MS systems are favored for their enhanced 
specificity and sensitivity when compared with other 
analytical instruments. As a result, they are frequently 
employed to determine quantities of small molecules and 
to ascertain critical compound parameters, such as reten-
tion time (RT), and the charge ratio of the parent ion and 
two daughter ions (Wu et al., 2021; Yang et al., 2021; Pan 
et al., 2023).

In this study, the optimization of acquisition settings 
and MRM transitions was carried out meticulously. To 
attain the most favorable mass spectrometry parameters, 

Table 2  Comparison of matrix-matched calibration and solvent calibration of 5 analytes (5 – 1000 μg·L−1)

PGRs Retention time /min Regression equations R2 Matrix effect /% LOQs
/(μg·kg−1)

ZR 3.93 y = 9 130.689 54 x - 19 001.245 95 0.997 94 - 30.06% 5

ZT 3.64 y = 5 612.367 08 x - 25 783.183 06 0.998 58 - 17.38% 5

IAA 4.52 y = 5 179.841 69 x + 6 839.084 28 0.991 75 - 37.78% 5

GA3 4.33 y = 315.185 05 x + 523.183 00 0.990 61 - 3.35% 20

ABA 4.60 y = 557.108 70 x + 980.649 22 0.999 06 32.34% 5

Table 3  Precision and recovery of 5 analytes spiked at fresh 
cotton leaves

PGRs Spiked levels /
(μg·kg−1)

Recovery /% RSDr /% RSDR /%

ZR 0.005 91.68 5.30 4.00

0.01 89.21 3.53 5.97

0.1 82.84 2.79 9.37

1 86.04 4.57 9.26

ZT 0.005 98.97 2.82 5.18

0.01 84.03 7.11 13.12

0.1 79.07 4.72 7.62

1 81.77 2.11 2.83

IAA 0.005 87.58 6.46 4.33

0.01 90.71 3.39 1.07

0.1 87.28 3.04 4.59

1 81.08 2.19 6.00

GA3 0.02 92.87 7.90 14.64

0.04 85.75 7.68 3.61

0.1 85.41 7.06 6.89

1 83.49 5.25 5.11

ABA 0.005 80.78 3.43 10.17

0.01 84.25 5.02 10.57

0.1 86.63 8.47 3.45

1 86.95 2.28 3.66
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five target compounds were individually detected: ZR, 
ZT, and IAA were analyzed in ESI + mode, while GA3 and 
ABA were assessed in ESI  –  mode. Individualized opti-
mization of ionization parameters for each compound, 
including declustering voltage (DP), collision energy 
(CE), and ESI source temperature, was performed. Two 
ions with higher abundance were chosen for both quanti-
tative and qualitative analyses. It is worth noting that the 
optimized MS/MS parameters for the five compounds 
closely aligned with those reported in the prior study 
(Wang et al., 2020b).

Optimization of QuEChERS pretreatment method
For sample pretreatment in the QuEChERS method, 
liquid–liquid extraction with organic reagents is essen-
tial (Lakew et  al.,  2023). The choice of organic solvent 

influences the recovery of target compounds. Previ-
ous experiments have commonly employed methanol 
for extracting plant hormones (Du et  al.,  2012; Wells 
et  al.,  2013). However, the recovery using methanol 
alone was suboptimal, as plant hormones are suscepti-
ble to oxidative decomposition (Johnson et al., 2007). To 
mitigate this issue, BHT, a widely used antioxidant in the 
food industry to prevent lipid peroxidation, was intro-
duced (Ramachandran et  al.,  2022). While the addition 
of BHT led to an improvement in recovery, it still fell 
short of expectations. To further enhance recovery, an 
acid solution was introduced (Jiang et al., 2020). Formic 
acid or acetic acid at respective concentrations of 0.1% 
and 1% were incorporated, and the results indicated that 
the extraction efficiency of a 0.1% acetic acid–metha-
nol solution + BHT surpassed that of the other options. 

Fig. 6  Content of plant hormones in cotton leaves from the early flowering season to the stage of full bloom. Several plant growth regulator 
treatments commonly used in cotton fields were sprayed in the field to reveal the effects of different plant growth regulators on cotton 
phytohormones by detecting the dynamics of the changes in phytohormones among different treatments, and the feasibility of the methodology 
in this study was also validated. All plant hormones were quantified at fresh weight in this experiment

Table 4  Comparison between published chromatographic analysis methods and HPLC‒MS/MS methods for plant hormones

Analytes Plant matrix Analytical technique Recovery /% Linearity Running 
analysis time 
/min

References

IAA, GAs, tZ,ABA A. thaliana LC–ESI-IT-MS/MS 70.0–100.0 5–1 000 fmol 30 (Izumi et al., 2009)

IAA, ABA, JA, SA, IBA,GAs Rice leaves CE-ESI-TOF–MS 84.6–112.2 1.3–850 ng·mL−1 25 (Chen et al., 2011)

ABA, IAA, IBA, GAs, SA Green seaweeds HPLC-ESI-QTOF-MS 80.0–92.0 0.2–100 mg·mL−1 7 (Gupta et al., 2011)

tZ, K, KR Tobacco UHPLC-MS/MS 68.8–103.0 0.005–20 ng·mL−1 17 (Du et al., 2015)

BRs Brassica napus UHPLC-MS/MS 30.9–88.9 0.01–10.00 pmol 9 (Oklestkova et al., 2017)

JA, ABA, SA, BA, GAS Hamlin trees leave LC–ESI–MS/MS 34.6–50.3 0.1–100 ng·mL−1 12 (Suh et al., 2018)
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Consequently, the 0.1% acetic acid–methanol solu-
tion + BHT was selected as the extraction solvent for this 
experiment.

In the context of the QuEChERS pretreatment, sam-
ple purification is vital to eliminate impurities that could 
influence the experimental results and potentially dam-
age the instrument. In this study, the impact of MgSO4 
in conjunction with GCB, C18, and PSA on the recovery 
was explored (Musarurwa et  al.,  2019). MgSO4, serving 
as a dehydrating agent, aids in water adsorption within 
the extract, promoting solvent distribution and enhanc-
ing the recovery rate (Abbas et al., 2017). PSA is known 
for forming hydrogen bonds with polar matrix compo-
nents through weak ion exchange of amine groups, mak-
ing it a common choice for the removal of fatty acids, 
sugars, organic acids, lipids, and some pigments (Tette 
et  al.,  2016). GCB is effective at eliminating nonpolar 
interferences and is particularly efficient in pigment and 
phenolic removal (Bernardi et al., 2016). C18 is also adept 
at adsorbing nonpolar compounds and fats from sub-
strates (Wu et al., 2023). In this study, a thorough com-
parison and screening of various dosage combinations of 
MgSO4 with three commonly used adsorbents revealed 
that the combination of 150 mg MgSO4 and 30 mg C18 
produced the highest recovery rate.

Validation of a HPLC–MS/MS method for the detection 
of multiple phytohormones in cotton
Creating a standard curve is an essential step in estab-
lishing a quantitative method (Rahman et  al.,  2018a). 
Quantitative analysis in ESI is primarily susceptible to 
signal suppression or enhancement resulting from matrix 
or other interferences, the phenomenon known as the 
“matrix effect” (ME) (Trufelli et al., 2011).

Matrix interference becomes substantial when the 
absolute value of ME is equal to or exceeds 50% (Li 
et al., 2013). Prior research has underscored the presence 
of a more severe matrix effect in the detection of plant 
hormones (Jiang et al., 2020). Consequently, in this study, 
the matrix effects under the MS/MS (MRM mode) were 
evaluated by comparing standard in the solvent with 
matrix-matched standard.

Application of HPLC–MS/MS on detecting dynamic 
of hormone concentration in response to plant growth 
regulator
Plant growth regulators have gained widespread application 
in the realm of agricultural production, effectively influenc-
ing crop growth and development while enhancing crop 
yield and quality (Jiang et al., 2020). In this experiment, the 
commonly used plant growth regulator, mepiquat chloride, 
was chosen for application in cotton fields. It was admin-
istered in combination with the promotive plant growth 

regulators diethyl aminoethyl hexanoate and 24-epibrassi-
nolide, as well as the inhibitory plant growth regulator 
prohexadione calcium. The findings demonstrated that the 
GA3 content in all compound treatments exceeded that of 
the single treatment and CK groups. It was evident that 
the application of mepiquat chloride  led to an increase in 
GA3 content, in line with previous studies (Shi et al., 2022). 
Notably, DP reduced the content of ABA when compared 
with all other treatments. ABA is a potent growth inhibi-
tor with a pronounced inhibitory effect on cell division and 
elongation. It can impede the growth of various plant parts, 
including leaves, embryos, embryo sheaths, stems, hypoc-
otyls, and roots. ABA is also associated with the promo-
tion of dormancy and stomatal closure, further inhibiting 
plant growth (Chen et al., 2018). Moreover, All treatments 
applied in combination compared with those applied indi-
vidually notably elevated the content of IAA. Previous 
research bindicated that high concentrations of IAA stim-
ulate ethylene production and accelerate organ abscission 
(Mao et  al.,  2014). Zhu’s study showed that growth hor-
mone promotes fibre development by enhancing GA bio-
synthesis (Zhu et al., 2022). Most treatment combinations 
had no significant effect on ZT content which ensure the 
cell viability and delay plant senescence when treated in 
combination (Jiang et  al.,  2020). These results collectively 
suggest that various compounds of plant growth regulators 
play a pivotal role in modulating the growth and develop-
ment of cotton plants by influencing GA3 and IAA levels 
and reducing ABA content.

Conclusions
This study aimed to develop and validate the QuEChERS-
based HPLC‒MS/MS assay for the concurrent quantifica-
tion of five plant hormones (ZT, ZR, IAA, ABA, and GA3) 
in cotton leaves. Successful chromatographic separation 
and mass spectrometric detection of these plant hor-
mones were achieved through meticulous methodology. 
The QuEChERS pretreatment method was employed to 
prepare the samples. The utilized  extraction solvent was 
0.1% acetic acid methanol solution + 1  mmol·L–1 BHT, 
while the adsorbent consisted of 150  mg MgSO4 and 
30  mg C18. The validation of the results encompassed 
assessments of the matrix effect, linearity, LOD, LOQ, and 
precision. These analyses confirmed the accuracy, sen-
sitivity, and reproducibility of the method. Cotton leaves 
collected at various time points in the field were subject to 
examination for the presence of the five plant hormones. 
This method was then employed to explore alterations in 
plant hormones within cotton plants following treatments 
with various plant growth regulators. The method exhib-
ites high sensitivity and selectivity, underscoring its utility 
in unraveling the mechanisms regulating cotton growth 
and development by plant hormones.
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