TY - STD TI - Bange MP, Milroy SP. Growth and dry matter partitioning of diverse cotton genotypes. Field Crop Res. 2004;87(1):73–87. https://doi.org/10.1016/j.fcr.2003.09.0. ID - ref1 ER - TY - STD TI - Boquet DJ, Breitenbeck GA. Nitrogen rate effect on partitioning of nitrogen and dry matter by cotton. Crop Sci. 2000;40(6):1685–93. https://doi.org/10.2135/cropsci2000.4061685x. UR - https://doi.org/10.2135/cropsci2000.4061685x ID - ref2 ER - TY - STD TI - Brodrick R, Bange MP, Milroy SP, et al. Physiological determinants of high yielding ultra-narrow row cotton: biomass accumulation and partitioning. Field Crop Res. 2012;134(3):122–9. https://doi.org/10.1016/j.fcr.2012.05.00. UR - https://doi.org/10.1016/j.fcr.2012.05.00 ID - ref3 ER - TY - STD TI - Clawson EL, Cothren JT, Blouin DC, et al. Timing of maturity in ultra-narrow and conventional row cotton as affected by nitrogen fertilizer rate. Agron J. 2008;100(2):421–31. https://doi.org/10.2134/agrojnl2007.0131. ID - ref4 ER - TY - STD TI - Dai JL, Li WJ, Zhang DM, et al. Competitive yield and economic benefits of cotton achieved through a combination of extensive pruning and a reduced nitrogen rate at high plant density. Field Crop Res. 2017;209:65–72. https://doi.org/10.1016/j.fcr.2017.04.010. ID - ref5 ER - TY - STD TI - Dexter BW, Runion GB, Balkcom KS. Nitrogen fertilizer sources and tillage effects on cotton growth, yield, and fiber quality in a coastal plain soil. Field Crop Res. 2017;201:184–91. https://doi.org/10.1016/j.fcr.2016.11.0. ID - ref6 ER - TY - STD TI - Diomides SZ, Shibu J, Kara N. Competition for15N labeled nitrogen in a loblolly pine–cotton alley cropping system in the southeastern United States. Agric Ecosyst Environ. 2009;131:40–50. https://doi.org/10.1016/j.agee.2008.08.012. ID - ref7 ER - TY - STD TI - Dong HZ, Li WJ, Eneji AE, et al. Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field. Field Crop Res. 2012;126(1):137–44. https://doi.org/10.1016/j.fcr.2011.10.00. ID - ref8 ER - TY - STD TI - Food and Agriculture Organization of the United Nations. Value of agricultural production; License: CC BY-NC-SA 3.0 IGO. Rome: FAO; 2016. http://www.fao.org/faostat/en/data/QV. UR - http://www.fao.org/faostat/en/data/QV ID - ref9 ER - TY - STD TI - Food and Agriculture Organization of the United Nations. Fertilizers by nutrient; License: CC BY-NC-SA 3.0 IGO. Rome: FAO; 2017. http://www.fao.org/faostat/en/data/RFN. UR - http://www.fao.org/faostat/en/data/RFN ID - ref10 ER - TY - STD TI - Gerik TJ, Oosterhuis DM, Torbert HA. Managing cotton nitrogen supply. Adv Agron. 1998;64(8):115–47. https://doi.org/10.1016/S0065-2113(08)60503-9. ID - ref11 ER - TY - STD TI - Jackson BS, Gerik TJ. Boll shedding and boll load in nitrogen stressed cotton. Agron J. 1990;82(3):483–8. https://doi.org/10.2134/agronj1990.00021962008200030008x. ID - ref12 ER - TY - STD TI - Khan A, Wang LS, Ali S, et al. Optimal planting density and sowing date can improve cotton yield by maintaining reproductive organ biomass and enhancing potassium uptake. Field Crop Res. 2017;214:164–74. https://doi.org/10.1016/j.fcr.2017.09.016. ID - ref13 ER - TY - STD TI - Lemaire G, Jeuffroy MH, Gastal F. Diagnosis tool for plant and crop N status in vegetative stage: theory and practices for crop N management. Eur J Agron. 2008;28:614–24. https://doi.org/10.1016/j.eja.2008.01.005. ID - ref14 ER - TY - STD TI - Li PC, Dong HZ, Liu AZ, et al. Effects of nitrogen rate and split application ratio on nitrogen use and soil nitrogen balance in cotton fields. Pedosphere. 2017;27:769–77. https://doi.org/10.1016/S1002-0160(17)60303. ID - ref15 ER - TY - STD TI - Luo HH, Wang Q, Zhang JK, et al. One-time fertilization at first flowering improves lint yield and dry matter partitioning in late planted short-season cotton. J Integr Agric. 2020;19(2):509–17. https://doi.org/10.1016/S2095-3119(19)62623-7. ID - ref16 ER - TY - STD TI - Luo Z, Liu H, Li WP, et al. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crop Res. 2018;218:150–7. https://doi.org/10.1016/j.fcr.2018.01.003. ID - ref17 ER - TY - STD TI - Read JJ, Reddy KR, Jenkins JN. Yield and fiber quality of upland cotton as influenced by nitrogen and potassium nutrition. Eur J Agron. 2006;24(3):282–90. https://doi.org/10.1016/j.eja.2005.10.004. ID - ref18 ER - TY - STD TI - Reddy KR, Koti S, Davidonis GH, et al. Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth, development, yield, and fiber quality. Agron J. 2004;96(4):1148–57. https://doi.org/10.2134/agronj2004.1148. ID - ref19 ER - TY - STD TI - Rinehardt JM, Edmisten KL, Wells R, et al. Response of ultra–narrow and conventional spaced cotton to variable nitrogen rates. J Plant Nutr. 2005;27(4):743–55. https://doi.org/10.1081/PLN-120030379. ID - ref20 ER - TY - STD TI - Rochester IJ. Using seed nitrogen concentration to estimate crop N use-efficiency in high-yielding irrigated cotton. Field Crop Res. 2012;127:140–5. https://doi.org/10.1016/j.fcr.2011.11.01. ID - ref21 ER - TY - STD TI - Rochester IJ, Ceeney S, Maas S, et al. Monitoring nitrogen use efficiency in cotton crops. Australian Cotton Grower. 2009;30(2):42–3.https://search.informit.com.au/documentSummary;dn=950796977920799. UR - https://search.informit.com.au/documentSummary;dn=950796977920799 ID - ref22 ER - TY - STD TI - Rochester IJ, O'Halloran J, Maas S, et al. Nutrition feature: monitoring nitrogen use efficiency in your region. Australian Cotton Grower. 2007;28(4):24–7.https://search.informit.com.au/documentSummary;dn=267078731038070. UR - https://search.informit.com.au/documentSummary;dn=267078731038070 ID - ref23 ER - TY - STD TI - Shahbaz AT, Huang Y, Abdul H, et al. Mepiquat chloride effects on cotton yield and biomass accumulation under late sowing and high density. Field Crop Res. 2018;215:59–65. https://doi.org/10.1016/j.fcr.2017.09.032. ID - ref24 ER - TY - STD TI - Stamatiadis S, Tsadilas C, Samaras V, et al. Nitrogen uptake and N-use efficiency of Mediterranean cotton under varied deficit irrigation and N fertilization. Eur J Agron. 2016;73:144–51. https://doi.org/10.1016/j.eja.2015.11.01. UR - https://doi.org/10.1016/j.eja.2015.11.01 ID - ref25 ER - TY - STD TI - Wang HM, Chen YL, Xu BJ, et al. Long-term exposure to slightly elevated air temperature alleviates the negative impacts of short term waterlogging stress by altering nitrogen metabolism in cotton leaves. Plant Physiol Biochem. 2018;123:242–51. https://doi.org/10.1016/j.plaphy.2017.12.019. ID - ref26 ER - TY - STD TI - Xue XP, Sha YZ, Guo WQ, et al. Accumulation characteristics of biomass and nitrogen and critical nitrogen concentration dilution model of cotton reproductive organ. Acta Ecological Sonica. 2008;28(12):6204–11. https://doi.org/10.1016/S1872-2032(09)60015-9. ID - ref27 ER - TY - STD TI - Yang GZ, Chu KY, Tang HY, et al. Fertilizer 15N accumulation, recovery and distribution in cotton plant as affected by N rate and split. J Integr Agric. 2013;12(6):999–1007. https://doi.org/10.1016/S2095-3119(13)60477-3. ID - ref28 ER - TY - STD TI - Yang GZ, Tang HY, Nie YC, et al. Responses of cotton growth, yield, and biomass to nitrogen split application ratio. Eur J Agron. 2011;35(3):164–70. https://doi.org/10.1016/j.eja.2011.06.00. ID - ref29 ER - TY - STD TI - Yang GZ, Tang HY, Tong J, et al. Effect of fertilization frequency on cotton yield and biomass accumulation. Field Crop Res. 2012;125(1):161–6. https://doi.org/10.1016/j.fcr.2012.08.00. ID - ref30 ER - TY - STD TI - Yeates SJ, Constable GA, Mccumstie T. Irrigated cotton in the tropical dry season. II: biomass accumulation, partitioning and RUE. Field Crop Res. 2010;116(3):290–9. https://doi.org/10.1016/j.fcr.2010.01.007. ID - ref31 ER - TY - STD TI - Zhang DM, Li WJ, Xin CS, et al. Lint yield and nitrogen use efficiency of field-grown cotton vary with soil salinity and nitrogen application rate. Field Crop Res. 2012;138(3):63–70. https://doi.org/10.1016/j.fcr.2012.09.0. ID - ref32 ER - TY - STD TI - Zurwellera BA, Rowland DL, Mulvaney MJ, et al. Optimizing cotton irrigation and nitrogen management using a soil water balance model and in-season nitrogen applications. Agric Water Manag. 2019;216:306–14. https://doi.org/10.1016/j.agwat.2019.01.011. ID - ref33 ER -