TY - STD TI - Blas-Sevillano RH, Veramendi T, La Torre B, et al. Physicochemical characterization of several types of naturally colored cotton fibers from Peru. Carbohydr Polym. 2018;197:246–52. https://doi.org/10.1016/j.carbpol.2018.06.006. ID - ref1 ER - TY - STD TI - Chen HL, Cluver B. Biodegradation and mildew resistance of naturally colored cottons. Text Res J. 2010;80:2188–94.https://doi.org/10.1177/0040517510376264. ID - ref2 ER - TY - STD TI - Cohen H, Szymanski J, Aharoni A, et al. Assimilation of 'omics' strategies to study the cuticle layer and suberin lamellae in plants. J Exp Bot. 2017;68:5389–400. https://doi.org/10.1093/jxb/erx348. ID - ref3 ER - TY - STD TI - Crews PC, Hustvedt G. The ultraviolet protection factor of naturally-pigmented cotton. J Cotton Sci. 2005;9:47–55.https://www.cotton.org/journal/2005-09/1/47.cfm. UR - https://www.cotton.org/journal/2005-09/1/47.cfm ID - ref4 ER - TY - STD TI - Davin LB, Lewis NG. Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol. 2000;123:453–62.https://doi.org/10.1104/pp.123.2.453. ID - ref5 ER - TY - STD TI - de Morais TE, Corrêa AC, Manzoli A, et al. Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose. 2010;17:595–606.https://doi.org/10.1007/s10570-010-9403-0. ID - ref6 ER - TY - STD TI - Feng H, Guo L, Wang G, et al. The negative correlation between fiber color and quality traits revealed by QTL analysis. PLoS One. 2015;10:e0129490. https://doi.org/10.1371/journal.pone.0129490. ID - ref7 ER - TY - STD TI - Feng H, Li Y, Wang S, et al. Molecular analysis of proanthocyanidins related to pigmentation in brown cotton fibre (Gossypium hirsutum L.). J Exp Bot. 2014;65:5759–69. https://doi.org/10.1093/jxb/eru286. ID - ref8 ER - TY - STD TI - Feng H, Tian X, Liu Y, et al. Analysis of flavonoids and the flavonoid structural genes in brown fiber of upland cotton. PLoS One. 2013;8:e58820. https://doi.org/10.1371/journal.pone.0058820. ID - ref9 ER - TY - STD TI - Feng H, Yang Y, Sun S, et al. Molecular analysis of caffeoyl residues related to pigmentation in green cotton fibers. J Exp Bot. 2017;68:4559–69. https://doi.org/10.1093/jxb/erx281. ID - ref10 ER - TY - STD TI - Gong W, He S, Tian J, et al. Comparison of the transcriptome between two cotton lines of different fiber color and quality. PLoS One. 2014;9:e112966. https://doi.org/10.1371/journal.pone.0112966. ID - ref11 ER - TY - STD TI - Graca J. Suberin: the biopolyester at the frontier of plants. Front Chem. 2015;3:62. https://doi.org/10.3389/fchem.2015.00062. ID - ref12 ER - TY - CHAP AU - Günaydin, G. K. AU - Avinc, O. AU - Palamutcu, S. ED - Gardetti, M. ED - Muthu, S. PY - 2019 DA - 2019// TI - Naturally colored organic cotton and naturally colored cotton fiber production BT - Organic cotton PB - Springer CY - Singapore UR - https://doi.org/10.1007/978-981-10-8782-0_4 DO - 10.1007/978-981-10-8782-0_4 ID - Günaydin2019 ER - TY - STD TI - Guo K, Tu L, He Y, et al. Interaction between calcium and potassium modulates elongation rate in cotton fiber cells. J Exp Bot. 2017;68:5161–75. https://doi.org/10.1093/jxb/erx346. ID - ref14 ER - TY - STD TI - Hinchliffe DJ, Condon BD, Thyssen G, et al. The GhTT2_A07 gene is linked to the brown colour and naturally flame retardancy phenotypes of Lc1 cotton (Gossypium hirsutum L.) fibres. J Exp Bot. 2016;67:5461–71. https://doi.org/10.1093/jxb/erw312. ID - ref15 ER - TY - STD TI - Hu Q, Min L, Yang X, et al. Laccase GhLac1 modulates broad-spectrum biotic stress tolerance via manipulating phenylpropanoid pathway and jasmonic acid synthesis. Plant Physiol. 2018;176:1808–23. https://doi.org/10.1104/pp.17.01628. ID - ref16 ER - TY - STD TI - Hua S, Wang X, Yuan S, et al. Characterization of pigmentation and cellulose synthesis in colored cotton fibers. Crop Sci. 2007;47:1540–6. https://doi.org/10.2135/cropsci2006.12.0835. ID - ref17 ER - TY - STD TI - Ioelovich M, Leykin A. Structural investigations of various cotton fibers and cotton celluloses. BioResources. 2008;3:170–7. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_03_1_0170_Ioelovich_L_Structure_Cotton/104. UR - https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_03_1_0170_Ioelovich_L_Structure_Cotton/104 ID - ref18 ER - TY - STD TI - Kim HJ. Fiber biology. in: Fang DD, Percy RG, editors. Cotton, 2nd edn. Agronomy monograph. Madison: American Society of Agronomy, Crop Science Society of America, and soil science Society of America; 2015. p. 97–127. https://doi.org/10.2134/agronmonogr57.2013.0022. ID - ref19 ER - TY - STD TI - Li YJ, Sun SC, Zhang XY, et al. New clues concerning pigment biosynthesis in green colored fiber provided by proteomics-based analysis. J Integr Agric. 2018;17:46–53. https://doi.org/10.1016/S2095-3119(17)61692-7. ID - ref20 ER - TY - STD TI - Li YJ, Zhang XY, Wang FX, et al. A comparative proteomic analysis provides insights into pigment biosynthesis in brown color fiber. J Proteome. 2013;78:374–88. https://doi.org/10.1016/j.jprot.2012.10.005. ID - ref21 ER - TY - STD TI - Liu HF, Luo C, Song W, et al. Flavonoid biosynthesis controls fiber color in naturally colored cotton. Peer J. 2018;6:e4537.https://doi.org/10.7717/peerj.4537. ID - ref22 ER - TY - STD TI - Ma M, Hussain M, Memon H, et al. Structure of pigment compositions and radical scavenging activity of naturally green-colored cotton fiber. Cellulose. 2015;23:955–63. https://doi.org/10.1007/s10570-015-0830-9. ID - ref23 ER - TY - STD TI - Ma Z, He S, Wang X, et al. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet. 2018;50:803–13. https://doi.org/10.1038/s41588-018-0119-7. ID - ref24 ER - TY - STD TI - Matusiak M, Frydrych I. Investigation of naturally coloured cotton of different origin – analysis of fibre properties. Fibres Text East Eur. 2014;22:34–42. http://www.fibtex.lodz.pl/article1336.html. UR - http://www.fibtex.lodz.pl/article1336.html ID - ref25 ER - TY - CHAP AU - Rathinamoorthy, R. AU - Parthiban, M. ED - Martínez, L. ED - Kharissova, O. ED - Kharisov, B. PY - 2017 DA - 2017// TI - Colored cotton: novel eco-friendly textile material for the future BT - Handbook of Ecomaterials PB - Springer CY - New York ID - Rathinamoorthy2017 ER - TY - STD TI - Ryser U, Meier H, Holloway PJ. Identification and localization of suberin in the cell walls of green cotton fibres (Gossypium hirsutum L., var. green lint). Protoplasma. 1983;117:196–205. https://doi.org/10.1007/BF01281823. ID - ref27 ER - TY - STD TI - Schmutz A, Buchala AJ, Ryser U. Changing the dimensions of suberin lamellae of green cotton fibers with a specific inhibitor of the endoplasmic reticulum-associated fatty acid elongases. Plant Physiol. 1996;110:403–11. https://doi.org/10.1104/pp.110.2.403. ID - ref28 ER - TY - JOUR AU - Schmutz, A. AU - Jenny, T. AU - Amrhein, N. PY - 1993 DA - 1993// TI - Caffeic acid and glycerol are constituents of the suberin layers in green cotton fibres JO - Planta. VL - 189 UR - https://doi.org/10.1007/BF00194445 DO - 10.1007/BF00194445 ID - Schmutz1993 ER - TY - STD TI - Schmutz A, Jenny T, Ryser U. A caffeoyl-fatty acid-glycerol ester from wax associated with green cotton fibre suberin. Phytochemistry. 1994;36:1343–6. https://doi.org/10.1016/S0031-9422(00)89721-6. ID - ref30 ER - TY - STD TI - Semi̇zer-cumıng D, Altan F, Akdemir H, et al. QTL analysis of fiber color and fiber quality in naturally green colored cotton (Gossypium hirsutum L.). Turk J Field Crops. 2015;20:49–58. https://doi.org/10.17557/.94527. ID - ref31 ER - TY - STD TI - Sturn A, Quackenbush J, Trajanoski Z. Genesis: cluster analysis of microarray data. Bioinformatics. 2002;18:207–8. https://doi.org/10.1093/bioinformatics/18.1.207. ID - ref32 ER - TY - STD TI - Tan J, Tu L, Deng F, et al. A genetic and metabolic analysis revealed that cotton fiber cell development was retarded by flavonoid naringenin. Plant Physiol. 2013;162:86–95. https://doi.org/10.1104/pp.112.212142. ID - ref33 ER - TY - STD TI - Tang W, He Y, Tu L, et al. Down-regulating annexin gene GhAnn2 inhibits cotton fiber elongation and decreases Ca2+ influx at the cell apex. Plant Mol Biol. 2014;85:613–25. https://doi.org/10.1007/s11103-014-0208-7. ID - ref34 ER - TY - STD TI - Tu L, Tan J, Guo K, et al. Flavonoid pathway in cotton fiber development. Sci Sin Vitae. 2014;44:758–65.https://doi.org/10.1360/052014-89. ID - ref35 ER - TY - STD TI - Vanholme R, Storme V, Vanholme B, et al. A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell. 2012;24:3506–29. https://doi.org/10.1105/tpc.112.102574. ID - ref36 ER - TY - STD TI - Vishwanath SJ, Delude C, Domergue F, et al. Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier. Plant Cell Rep. 2015;34:573–86. https://doi.org/10.1007/s00299-014-1727-z. ID - ref37 ER - TY - STD TI - Wang M, Tu L, Yuan D, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet. 2019;51:224–9. https://doi.org/10.1038/s41588-018-0282-x. ID - ref38 ER - TY - STD TI - Wen T, Wu M, Shen C, et al. Linkage and association mapping reveals the genetic basis of brown fibre (Gossypium hirsutum). Plant Biotechnol J. 2018;16:1654–66. https://doi.org/10.1111/pbi.12902. ID - ref39 ER - TY - STD TI - Xiao YH, Yan Q, Ding H, et al. Transcriptome and biochemical analyses revealed a detailed proanthocyanidin biosynthesis pathway in brown cotton fiber. PLoS One. 2014;9:e86344.https://doi.org/10.1371/journal.pone.0086344. ID - ref40 ER - TY - STD TI - Xiao YH, Zhang ZS, Yin MH, et al. Cotton flavonoid structural genes related to the pigmentation in brown fibers. Biochem Biophys Res Commun. 2007;358:73–8. https://doi.org/10.1016/j.bbrc.2007.04.084. ID - ref41 ER - TY - STD TI - Yan Q, Wang Y, Li Q, et al. Up-regulation of GhTT2-3A in cotton fibres during secondary wall thickening results in brown fibres with improved quality. Plant Biotechnol J. 2018;16:1735–47.https://doi.org/10.1111/pbi.12910. ID - ref42 ER - TY - STD TI - Yu J, Jung S, Cheng CH, et al. CottonGen: a genomics, genetics and breeding database for cotton research. Nucleic Acids Res. 2014;42(Database issue):D1229–36. https://doi.org/10.1093/nar/gkt1064. ID - ref43 ER - TY - STD TI - Yuan S, Hua S, Malik W, et al. Physiological and biochemical dissection of fiber development in colored cotton. Euphytica. 2012;187:215–26. https://doi.org/10.1007/s10681-012-0653-9. ID - ref44 ER - TY - STD TI - Zhang M, Hu BT. A study on colorant stability of naturally colored cotton. Dyeing and Finishing. 2003;29(3):1-7.http://en.cnki.com.cn/Article_en/CJFDTOTAL-YIRA200303000.htm. UR - http://en.cnki.com.cn/Article_en/CJFDTOTAL-YIRA200303000.htm ID - ref45 ER - TY - STD TI - Zhang ML, Song XL, Sun XZ, et al. Observation of differentiation and pigment deposition process in colored cotton fibers. Acta Agron Sin. 2011;37:1280–8. http://zwxb.chinacrops.org/EN/abstract/abstract4856.shtml. UR - http://zwxb.chinacrops.org/EN/abstract/abstract4856.shtml ID - ref46 ER -