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Abstract

Recent technological advances in cotton (Gossypium hirsutum L.) phenotyping have offered tools to improve the
efficiency of data collection and analysis. High-throughput phenotyping (HTP) is a non-destructive and rapid approach
of monitoring and measuring multiple phenotypic traits related to the growth, yield, and adaptation to biotic or abiotic
stress. Researchers have conducted extensive experiments on HTP and developed techniques including spectral,
fluorescence, thermal, and three-dimensional imaging to measure the morphological, physiological, and pathological
resistance traits of cotton. In addition, ground-based and aerial-based platforms were also developed to aid in the
implementation of these HTP systems. This review paper highlights the techniques and recent developments for HTP
in cotton, reviews the potential applications according to morphological and physiological traits of cotton, and
compares the advantages and limitations of these HTP systems when used in cotton cropping systems. Overall, the use
of HTP has generated many opportunities to accurately and efficiently measure and analyze diverse traits of cotton.
However, because of its relative novelty, HTP has some limitations that constrains the ability to take full advantage of
what it can offer. These challenges need to be addressed to increase the accuracy and utility of HTP, which can be
done by integrating analytical techniques for big data and continuous advances in imaging.
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Aerial-based, Ground-based

Background
Plant phenotyping measures the morphological and physio-
logical traits of plants as a function of genetics, environ-
ment, and management (Yang et al. 2017). Phenotyping on
large quantities of plants has traditionally been challenging,
involving time- and resource-consuming measurements of
the parameters (Qiu et al. 2018). However, the digital revo-
lution has brought advancements in phenotyping that will
be greatly beneficial to the plant sciences. In plant breeding,
high throughput phenotyping (HTP) – a nondestructive
and noninvasive approach of measuring complex plant
traits – is a promising tool that can help to reach solutions
toward the long-standing “10 Billion People Question” (Ray
et al. 2013; Tester and Langridge 2010). Like the advent of
high throughput production in other industries and sci-
ences, rapid phenotyping of complex plant traits related to

the growth, yield, and adaptation to biotic or abiotic stress
would significantly optimize crop production.
Plant phenotyping techniques based on remote sensing

technologies and reflectance data are important tools in
improving agricultural management schemes (Candiago
et al. 2015). Vegetation indices (VI) derived from the
spectral reflectance data can be used to estimate and
monitor plant growth parameters such as leaf area index,
ground cover fraction, leaf water status, chlorophyll or
nitrogen concentrations, amongst other variables (Cam-
marano et al. 2014; Haboudane et al. 2008; Tanriverdi
2006). More specifically, VI are key components of pre-
cision agriculture because of their valuable applications
in estimating crop yield, in variable-rate application
technologies involving chemical spraying and fertility
management, and in detecting weeds and crop diseases
(Grisso et al. 2011; Zerger et al. 2010).
More recently, HTP using imaging techniques were

developed to improve the efficiency of cotton (Gossy-
pium hirsutum L.) phenotyping. Some applications of
these technologies include in-field cotton boll detection
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based on color and textural features using two-
dimensional (2-D) color images (Li et al. 2016), measure-
ment of plant height and canopy cover (Jiang et al. 2016;
Sharma and Ritchie 2015), detection of flower based on
multispectral images (Xu et al. 2019), measurement of
internode lengths using an in-field machine vision system
(McCarthy et al. 2010), estimation of water status using
thermal images by using an infrared thermal camera (Co-
hen et al. 2005), and measurement of the canopy height,
temperature, and normalized differential vegetation index
(NDVI) (Andrade-Sanchez et al. 2014). With the extensive
production of cotton worldwide due to its great import-
ance as a natural fiber-producing crop, these HTP systems
offer greater potential in improving the accuracy, effi-
ciency, speed, and quality of data collection for determin-
ing in-season crop growth and development in
comparison with traditional phenotyping. However, due
to the heterogeneity of field plots and variations in envir-
onmental conditions in cotton production, it is inevitable
to come across challenges when implementing these
systems.
This review paper has the following objectives:

1. Identify the techniques and recent developments of
HTP in cotton;

2. Discuss the potential applications according to the
morphological and physiological traits of cotton;

3. Compare the advantages and limitations of these
HTP systems when used in cotton cropping
systems.

Techniques and developments
HTP sensors, platforms, and other high-resolution
applications

a. Sensors
Electromagnetic sensors are commonly used in HTP, be-
cause they offer quick and nondestructive estimation of
crop growth parameters. Commonly used sensors detect
radiation with frequencies that correspond with

reflectance, emission, and fluorescence of electromag-
netic radiation. As a result, the sensor types are catego-
rized by wavelength or frequency, as well as by the
physical parameters being measured. For the purposes of
this paper, spectral, thermal, fluorescence, and three-
dimensional (3D) sensors will be discussed separately, al-
though there are overlaps in technology and wavelengths
among some of these sensors. A summary of the differ-
ent sensing techniques used for cotton HTP applications
is presented in Table 1.
Spectral cameras and spectrometers are usually used in

high throughput sensing to measure reflected visible and
near-infrared radiation (NIR), with specific wavelengths
chosen for their relationship to plant structure and bio-
chemistry (Curran 1989). Plant leaf reflectance is highly
characterized as a function of chlorophyll, mesophyll
structure, water, oxygen, and several other chemical and
structural characteristics (Liu et al. 2016a). As a result, ra-
tios, normalized ratios, and other more complex formulas
have been used to ascertain chlorophyll density, ground
cover fraction, nitrogen status, and several other broad
physiological parameters (Knyazikhin et al. 2013; Ollinger
et al. 2008; Ritchie et al. 2010; Xue and Su 2017).
Imaging quantifies plant structure, using measurements

of reflected, absorbed, or transmitted light for quantitative
phenotypic analysis of multiple traits such as ground cover
fraction, leaf area, color, seedling vigor and morphology,
root structures, nutrient content, disease detection and as-
sessment, and yield (Li et al. 2014). The interactions of
plant and light, particularly in relation to photosynthetic
responses, are also the basic concept of the VI, which are
defined as spectral transformation that emphasize the
presence and state of vegetation (Bannari et al. 1995; Khan
et al. 2018b). Some of the widely known VI are the NDVI,
green normalized difference vegetation index (GNDVI),
red edge normalized difference vegetation index or nor-
malized difference red edge (RENDVI or NDRE), soil ad-
justed vegetation index (SAVI), modified soil adjusted
vegetation index (MSAVI), and enhanced vegetation index
(EVI) (Bannari et al. 1995; Haboudane et al. 2004; Jackson

Table 1 Summary of the sensing techniques typically used in high-throughput phenotyping applications in cotton

Type of sensing Wavelength range References

Spectral Visible-near infrared Bannari et al. 1995; Curran, 1989; Elvidge and Chen 1995; Haboudane et al. 2004;
Huete, 1988; Jackson and Huete 1991; Khan et al. 2018b; Knyazikhin et al. 2013;
Li et al. 2014; Liu et al. 2016a; Ollinger et al. 2008; Panda et al. 2010; Qi et al. 1994;
Ritchie and Bednarz 2005; Ritchie et al. 2008; Ritchie et al. 2010; Thenkabail et al. 2000;
Xue and Su 2017

Fluorescence Visible Gao et al. 2017; Li et al. 2018; Meroni et al. 2009; Massacci et al. 2008;
Oosterhuis et al. 2008; Snider et al. 2015; Wu et al. 2014; Zhang et al. 2018

Thermal Infrared Blonquist Jr et al. 2009; Blum et al. 1982; Cohen et al. 2005; Falkenberg et al. 2007;
Jones et al. 2009; Mahan et al. 2010; Manfreda et al. 2018; Sullivan et al. 2007;
Wanjura et al. 2004

LiDAR (Light detection
and ranging)

Ultraviolet-visible-near infrared Bietresato et al. 2016; Deery et al. 2014; French et al. 2016; Sun et al. 2018;
Whitaker 1998; Sun et al. 2017
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and Huete 1991; Panda et al. 2010). Imaging techniques
using these VI have been widely integrated in different re-
mote sensing applications, especially in precision agricul-
ture. Thenkabail et al. (2000) evaluated NDVI, SAVI, and
optimum multiple narrow band reflectance (OMNBR)
values that were obtained using a spectroradiometer and
reported that 12 specific narrow bands, between 350 nm
to 1 050 nm, provided the optimal estimations of leaf area
index, plant height, and yield in cotton with accuracy ran-
ging from 64 to 88%. Ritchie et al. (2008) reported a close
correlation (r2 = 0.72) of cotton NDVI values obtained
from a camera system (unmodified and NIR-sensitive
Nikon Coolpix 4 300 digital camera) and from ground-
based spectrometer. Quantitative and qualitative assess-
ment of vegetation using VI can be affected by several
factors, such as complex canopy system and varying soil
properties (Bannari et al. 1995). To minimize the influence
of soil effect on vegetation spectra, Huete (1988) devel-
oped the SAVI using the value of 0.05 as a fixed soil
adjustment factor (L). The SAVI was later improved when
Qi et al. (1994) developed the MSAVI based on the spec-
tral measurements of cotton with different soil color and
moisture levels. Unlike SAVI, MSAVI has a self-adjusting
L to account for the variability in soil conditions. Aside
from SAVI and MSAVI, perpendicular vegetation index
(PVI) can also be used to minimize background effects
(Elvidge and Chen 1995).
The use of plant reflectance for HTP is useful, but

there are several principles that should be considered
when using the reflectance approach. First, reflectance is
most likely to correlate with pigments or plant struc-
tures that are most prevalent in a plant. For example,
the dominant absorption in plant leaves in the visible
spectrum is due to chlorophyll, and VI which use visible
reflectance largely measure chlorophyll density, either
within the leaf or within the scene detected by the sens-
ing system. As a result, the use of a VI using visible and
NIR reflectance to measure nitrogen stress, water stress,
or any other limiting factors only has validity in the ab-
sence of other plant stressors that affect the reflectance
of the plant in a similar manner. For example, water
deficit stress in cotton results in a decreased leaf area
index, which corresponds with a lower VI due to less
leaf area sensed within the system. However, nitrogen
stress also results in a decreased leaf area index and lower
chlorophyll density within individual leaves, which also
corresponds with a lower VI. Therefore, researchers
should be cautious in assigning changes in vegetation re-
flectance indices to particular causal agents without elim-
ination of other potential confounding factors.
The advent of sensing systems with high spatial reso-

lution provides opportunities for the discrimination of
leaf color from leaf coverage. For example, a satellite
image with 1 m × 1m resolution will detect an individual

pixel as a combination of plant leaves, soil, and any
other features within the scene of the pixel. Conversely,
pixel resolutions of 2 cm × 2 cm or smaller are common
in unmanned aerial vehicle (UAV) applications, so an
individual pixel may correspond with an individual leaf
or adjacent leaves. These increases in resolution may be
of value in HTP, because they allow the discrimination
of leaf color from leaf coverage. However, spectral cali-
bration becomes increasingly important in these cases,
since imagery of a field may be composed of thousands
of individual images with their own corresponding light-
ing and camera settings.
Fluorescence meters have also been used to detect

plant metabolic or biochemical activity (Li et al. 2018).
Fluorescence is the re-emission of radiation at a different
wavelength by a surface that has absorbed light or simi-
lar electromagnetic radiation. The re-emitted light usu-
ally has a longer wavelength and consequently lower
energy than the original absorbed radiation. Therefore,
fluorescence differs from reflectance in that reflectance
measures the quantity of light at the same wavelength
which is reflected from the surface. Fluorescence has
many practical applications, but in plants, it is valuable
because it can be used to quantify the activity of several
pigments, including photosynthetic conversion efficiency
(Massacci et al. 2008; Gao et al. 2017; Zhang et al. 2018;).
The techniques have been used extensively in recent years
to determine heat tolerance in cotton (Oosterhuis et al.
2008; Snider et al. 2015; Wu et al. 2014).
As discussed by Meroni et al. (2009), remote sensing of

fluorescence in plants usually focuses on solar-induced
chlorophyll fluorescence (F). In cases where the sensor is
in close proximity to the plant, it may be possible to use
an active light source to more accurately ascertain fluores-
cence, but many remote sensing applications attempt to
quantify F passively. These methods are still considered to
be developed, even though the first attempt at passive
fluorescence measurements in plants was made in the
1970s. Because fluorescence is based on wavelengths of ra-
diation that are also reflected, fluorescence is not mea-
sured independently of plant reflectance and is subject to
the same challenges discussed for reflectance, with the
added limitation that fluorescence creates a small spectral
signal beyond that of reflectance and requires a combin-
ation of high spectral resolution and minimization of
background noise for accurate measurements.
Thermal sensing is a nondestructive method of asses-

sing the level of crop water deficit based on the measure-
ment of canopy temperature. As cotton becomes water-
stressed, stomatal closure results in a decrease of transpir-
ation and an attendant temperature increase (Blonquist Jr.
et al. 2009a). As a result, thermal sensing has been used to
detect temperature stress and temperature profiles within
crop canopies in several studies (Blum et al. 1982;
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Falkenberg et al. 2007; Jones et al. 2009; Mahan et al.
2010; Sullivan et al. 2007; Wanjura et al. 2004). Thermal
sensing measures temperature based on a combination of
emitted thermal radiation and the relative emissivity of
objects being measured. Since the composition of plant
leaves are mostly water and water has a high emissivity,
measuring the temperature of plant leaves can be
quite accurate; in many cases, the measurement error
is within 0.1 °C (Blonquist Jr. et al. 2009b). However,
some limitations of canopy temperature measure-
ments include low spatial resolution (Manfreda et al.
2018) and the effects of surrounding features with
relatively high radiation outputs (Jones et al. 2009).
There are also challenges brought about by the ther-
mal drift associated with sensor temperature (Blon-
quist Jr. et al. 2009b; Mahan et al. 2010). In addition,
thermal sensors tend to be expensive and fragile, par-
ticularly thermal cameras. Because of these drawbacks,
the use of thermal imagery to measure plant canopy
stress has always tried to balance the physical con-
straints of the sensing environment with the promise
of sensing a biologically important abiotic stress.
Another remote sensing system that is growing in

popularity uses light detection and ranging (LiDAR)
sensing. It involves estimation of the distance between
the sensor and the target object and analysis of the time-
of-flight (TOF) once the target object is illuminated with
a laser (Deery et al. 2014; Sun et al. 2018). The output of
LiDAR is a point cloud that is commonly used in 3D re-
construction, which is the process of capturing the shape
and appearance of real objects from a set of images
(Whitaker 1998). One particular advantage which is be-
ing offered by LiDAR remote sensing and 3D recon-
struction over manual methods is their capability to
characterize the volume of canopy and crop density even
in heterogenous field plots (Bietresato et al. 2016).
The two most prominent studies that feature the use

of LiDAR to scan cotton plants were done by French
et al. (2016) and Sun et al. (2017). Both systems were ac-
companied by a global positioning system (GPS) and
mounted on a tractor platform. High resolution and low
distortion mapping of cotton heights, widths, leaf area,
and boll counts were achieved by the system developed
by French et al. (2016) while multiple traits including
plant height, projected canopy area, and plant volume
were simultaneously extracted from repeated measure-
ments over the growing season by Sun et al. (2017).
In practice, limitations of LiDAR in HTP have been

related to the cost of the sensing system, which may be
in the tens to hundreds of thousands of dollars, and the
lack of corresponding red, green, and blue (RGB) spec-
tral information associated with the 3D structural mea-
surements of the sensors. As with other 3D imaging
systems, LiDAR also requires an open path to detect all

of the features within a plant canopy, so features may
be obscured without multiple angles of detection. In
addition, LiDAR may be affected by surface reflectiv-
ity and has potential health hazards associated with
the lasers which are used.
UAV with spectral imaging sensors can obtain the spec-

tral absorption and reflectance characteristics of crops,
which can be used to monitor the crop planting area and
crop growth, evaluate the biological and physical charac-
teristics of a crop, and predict crop yield (Yang et al.
2017). Ritchie and Bednarz (2005) used a photosynthetic-
ally active radiation/near infrared spectrometer to investi-
gate the relationship of red-edge based NDVI and leaf
area index and to quantify cotton defoliation. Results
showed that spectral data based on red edge measure-
ments can provide accurate defoliation estimates which
could possibly improve defoliation efficiency.

b. Platforms
With the development of acquisition technologies for
HTP, crop growth and development can be moni-
tored with phenotyping systems mounted on a
ground-based or aerial-based platform (Duan et al.
2017), which allows capturing high resolution images
and multiple crop traits at canopy level (Khan et al.
2018a). Ground-based HTP platforms, typically
equipped with GPS navigation device and sensors,
can produce data of higher resolution because of
their ability to capture images at a closer range
relative to the plant (Araus and Cairns 2014;
Condorelli et al. 2018). Aerial-based HTP platforms
offer greater speed in capturing and measuring traits
in a larger coverage area. These two platforms have
their own advantages and limitations when used in
cotton phenotyping (Table 2).
Various ground-based systems have been developed

and applied for a wide range of phenotypic and agro-
nomic studies in cotton. A ground-based plant phe-
notyping system built on a LeeAgra 3434 DL open
rider sprayer with three types of sensor was used by
Andrade-Sanchez et al. (2014) to evaluate the varia-
tions in canopy height, reflectance, and temperature
of 25 Pima cotton grown under optimal irrigation
supply and water-limited conditions. As expected,
data acquisition efficiency of the system was higher
when compared with manual measurements (r2 =
0.35–0.82). One advantage of this system is the stabil-
ity of the structure that is holding the sensors and its
minimal damage to the cotton stands particularly to
the plots with tall plants. This is considered as an im-
provement since a concern commonly raised when
using ground-based platforms is the damage that can
be brought about by the size of the platform relative
to the size of the plant as well as space allotted for

PABUAYON et al. Journal of Cotton Research            (2019) 2:18 Page 4 of 9



unrestrained movement of the system. Another ad-
vantage of this system over the manual phenotyping
method is that when multiple georeferenced sensors
were used, the bias in selecting the representative
samples in a plot was minimized. However, some po-
tential limitations of this HTP system are the diffi-
culty in maneuvering particularly when the plant row
spacing is limited or when the soil is wet, and the
relatively low clearance of one of the sensors (ultra-
sonic proximity sensor). It was emphasized in this
study that current maximum clearance of the ultra-
sonic proximity sensor for the system was not high
enough to be able to cover the tallest cotton plants.
This highlights the important consideration that
should be given to the sensor height especially in
areas with large variations of plant or canopy height.
Meanwhile, the image spatial resolution was limited
by the vehicle speed through the field and by the
sampling frequency of the data collection system. So,
the improvement of electronics and signal processing
will be needed for higher throughput in cotton.
Another ground-based phenotyping system that was

developed recently was the GPhenoVision which mainly
consisted of RGB image combining with image depth
(RGB-D), thermal, and hyperspectral cameras (Xu et al.
2018b). This HTP system was used to evaluate multi-
dimensional morphological traits of cotton such as leaf
area and canopy volume. It showed the potential of
measuring phenotypic traits for genomics and breeding
studies at a small scale. A rubber cushion was applied
on the sensor frames to reduce the vibrations that could
decrease the possibility of acquiring blurry images, which
has been one of the main concerns for the ground-based
platform. The authors noted some limitations of the sys-
tem that can be further improved such as optimization
of the illumination configuration for the three sensors,
improvement of data processing algorithms so that it
will be able to capture data in a regular plot layout and
collect data of complex traits from 3D or hyperspectral
images, and further improvement of the speed of data
processing.
The commonly used aerial-based platforms for cotton

phenotyping are rotary-wing and fixed-wing UAV. The
fixed-wing UAV has faster flight speed, longer flight

time, and a larger flight area coverage compared with
rotary-wing UAV (Ziliani et al. 2018). However, lack of
free hover ability and high flight speeds and altitudes of
fixed-wing UAV often result in blurry images (Herwitz
et al. 2004). Rotary-wing UAV has been commonly used
for crop phenotyping because it is relatively inexpensive,
easy to control, and has the ability to hover. The flight
planers such as Precision Flight, Drone Deploy, DJI Go,
and Litchi can build the flight missions with flight
height, speed, and overlaps which enable to design flight
routes and automatic landing. However, rotary-wing
UAV offers shorter flight time, lower payload, greater
sensitivity to weather conditions, and weaker wind re-
sistance compared with fixed-wing UAV (Shi et al. 2016;
Zhang and Kovacs 2012). These disadvantages limit the
application of rotary-wing UAV in crop phenotyping at
a large scale. Areas of improvement for rotary-wing
UAV system include longer battery duration to ensure
greater area coverage. For fixed-wing UAV, a faster
frame rate, shorter exposure time, and higher spatial
resolution would greatly improve its performance (Shi
et al. 2016).
Han et al. (2018) reported that high wind speed is a

challenge when acquiring high-quality plant height data
using UAV. In addition, digital terrain model (DTM) or
digital surface model (DSM) errors can also contribute
to the biases of plant height assessment. The highest
point of the cotton plant could be smoothed out due to
the pixel size or the movement of the plant, resulting in
a lower value than the actual maximum plant height
(Wang et al. 2018; Xu et al. 2019). Wang et al. (2018) re-
ported that when plant density is low, the plant height
measurements collected with UAV were lower compared
with the data collected using the ground-based platform.
This may be due to the lower resolution of the images
generated by the UAV platform. A lower resolution
digital elevation model (DEM) delineated with UAV
platform results in partially complete canopy profile and
lower plant height values than the ground-based meas-
urement. In addition, the movement of plant leaves
could affect overlapping images, which in turn could
lead to noise in 3D points (Xu et al. 2019). The uneven-
ness of the soil surface could also be an issue for cotton
plant height measurement. It was reported by Xu et al.

Table 2 Advantages and disadvantages of ground-based and aerial-based types of platforms for cotton phenotyping

Platform type Advantages Disadvantages References

Ground-based Structure stability, minimized bias
in sample selection, good spatial
resolution

Difficulty in maneuvering particularly when
the plant row spacing is limited or when
the soil is wet, long time to cover a whole
experiment

Andrade-Sanchez et al. 2014; Araus
and Cairns 2014; Condorelli et al. 2018;
McCarthy et al. 2010; Xu et al. 2018b

Aerial-based Large coverage of sampling area, data
collection can be done in a very short
amount of time

Shorter flight time, lower payload, greater
sensitivity to weather conditions, and
weaker wind resistance, spatial resolution
depends on speed and altitude

Han et al. 2018; Herwitz et al. 2004;
Shi et al. 2016; Wang et al. 2018;
Xu et al. 2019; Zhang and Kovacs 2012;
Ziliani et al. 2018
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(2019) that the standard deviation of the difference be-
tween the ground plane and the DEM for the ground
pixels was 1~12 cm. Similarly, Chu et al. (2016) reported
that the bare soil areas have about 5 cm uncertainty in
DEM, which resulted in the error of baseline when cal-
culating the plant height. In addition, the georeferencing
errors from the ortho-mosaic and DEM constrained the
plot scale and temporal data analysis. These errors
would be greatly reduced if there will be accurately sur-
veyed ground control points (GCP) that can be applied
when georeferencing the UAV images. Therefore, GCP
at multiple heights are needed for the calibration of the
plant height (Han et al. 2018).

c. Other high-resolution applications
High throughput phenotyping technologies, from differ-
ent platforms equipped with single or multiple sensors,
have generated massive and diverse sets of data for ana-
lysis (Singh et al. 2016). These datasets are important in
computer vision-based plant phenotyping applications,
such as pattern recognition (Mochida et al. 2018). Sev-
eral studies have used pattern recognition techniques to
improve agronomic resources management. Biradar and
Shrikhande (2015) proposed a method of developing a
system that detects and counts the number of flowers
using image patterns/flower patterns captured by a
digital camera. The method used Gaussian low-pass fil-
tering and morphological operations that removed non-
flower regions of the image and emphasized fine details
of the flower region. This method is advantageous in a
greenhouse setting, mainly for farmers who rely on
flower counts for revenue purposes. Similar principles of
pattern recognition were also used in the systems devel-
oped by Adamsen et al. (2000) and Hsu et al. (2011).
In cotton, one of the proposed applications of pattern

recognition technique is in identifying cotton leaf dis-
eases. Revathi and Hemalatha (2012) proposed the use
of image processing edge detection techniques and
homogeneous pixel counting technique for cotton dis-
eases detection (HPCCDD) algorithm to detect symp-
toms of Fusarium wilt, Verticillium wilt, and leaf blight.
A pattern recognition algorithm called Convolutional

Neural Networks was used by Xu et al. (2018a) to iden-
tify and count the number of opened cotton flowers
using aerial color images. Convolutional Neural Net-
works distinguishes and differentiates objects or aspects
from one another by assigning learnable weights or
biases to various objects in the input image (Saha 2018).
Liu et al. (2016b) reported the same algorithm to be ef-
fective in identifying flower species. Although results
from Xu et al. (2018a) confirmed that the system devel-
oped for identifying and automatic counting of cotton
flower was comparable with the results from manual
counting, one disadvantage which was emphasized by

the proponents was the underestimation in bloom
counts when data were collected from a single plot with
multiple crop stands. This limitation was due to inability
of the system to capture hidden flowers.
Xu et al. (2018b) developed an autonomous ground

robot system designed to count the number of cotton
bolls. The robot is equipped with real time kinematics
(RTK)-GPS system, inertial measurement unit, and Way-
point. These three components are important to ensure
that the robot can navigate the fields accurately, without
human intervention, and without damaging the crops
when it’s in between rows. Data processing involves con-
structing 3D point cloud from raw images, then count-
ing the number of cotton bolls from the point cloud.
This study was successful in a sense because it was able
to show that opened cotton bolls can be counted from
3D point cloud with less human participation in the ac-
tual collection. The field set-up in this study consisted of
one plant per plot, each plot was 1 m apart, and the dis-
tance between rows was 1.6 m. It would be interesting to
see if this type of robot system would be effective under
a more realistic field scenario with 9–13 plants per
meter and narrower plot and row spacing.
A time series can be used to monitor the changes in

growth characteristics of cotton over time (Hansen et al.
2014). In general, data acquired from multi-temporal
high-resolution and low-resolution time series can pro-
vide relevant information about the type of the crops,
cropping patterns, and other crop growth parameters
(Liu et al. 2018; Waldner et al. 2015). Wu et al. (2018)
monitored the progression of cotton root rot based on
the extracted NDVI time series profiles from combined
250-m moderate resolution imaging spectroradiometer
(MODIS) NDVI and 10-m Sentinal-2 NDVI time series.
When compared with a healthy cotton plant, the results
from this study showed decrease in values of parameters
pertinent in assessing cotton root rot infections such as
growth duration and maximum NDVI values. Similar
concept of identifying cotton diseases using spectral and
temporal signatures was also proposed by McKellip et al.
(2005). Hao et al. (2016) used this technique to develop
a method which can classify crops based on NDVI time
series of multiple years. However, this system can be
limited by the differences in location and the nature of
cropping systems.

Conclusions
Improvement in cotton productivity highly depends on
the availability of good quality phenotypic data. This re-
view shows that a lot of potential is seen in HTP when it
comes to improving data collection, management, and
analysis when measuring phenotypic traits in cotton and
in providing economic benefits in terms of decreased in-
put costs and resources (labor, time). Imaging techniques
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and sensor technologies using spectral, thermal, fluores-
cence, and 3D sensors are useful tools in assessing crop
characteristics, monitoring crop growth and development,
and in assessing health status of cotton. With the advent
of these HTP technologies, various ground-based and aer-
ial based platform systems have been developed for
phenotypic and agronomic studies in cotton. Even though
each system has its advantages and limitations, it is
clear that both systems offer potential for precise plant
phenotyping based on the studies cited in this review.
In addition to these techniques, there are other high-
resolution applications (pattern recognition and time
series) that have led to significant contributions in un-
derstanding and monitoring the responses of cotton in
different environmental conditions or scenarios. Future
research should focus on improving the robustness, ac-
curacy, effectivity, affordability, and maneuverability of
these HTP systems in cotton production. In addition,
improvements of HTP platforms should tackle the abil-
ity of these systems to capture the variability in cotton
fields.
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