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Abstract

Background: Genetic improvement in fiber quality is one of the main challenges for cotton breeders. Quantitative
trait loci (QTL) mapping provides a powerful approach to dissect the molecular mechanism in fiber quality traits. In
present study, Fi4, recombinant inbred line (RIL) population was backcrossed to paternal parent for a paternal
backcross (BC/P) population, deriving from one upland cotton hybrid. Three repetitive BC/P field trials and one
maternal backcross (BC/M) field trial were performed including both two BC populations and the original RIL
population.

Results: In total, 24 novel QTLs are detected for fiber quality traits and among which 13 QTLs validated previous
results. Thirty-five QTLs in BC/P populations explain 5.01%-22.09% of phenotype variation (PV). Among the 35 QTLs,
23 QTLs are detected in BC/P population alone. Present study provides novel alleles of male parent for fiber quality
traits with positive genetic effects. Particularly, gFS-Chr3—1 explains 22.09% of PV in BC/P population, which
increaseds 048 cN-tex™ ' for fiber strength. A total of 7, 2, 8, 2 and 6 QTLs explain over 10.00% of PV for fiber length,
fiber uniformity, fiber strength, fiber elongation and fiber micronaire, respectively. In RIL population, six common
QTLs are detected in more than one environment: gFL-Chr1-2, gFS-Chr5—1, gFS-Chr9-1, gFS-Chr21-1, gFM-Chr9-1
and gFM-Chr9-2. Two common QTLs of gFE-Chr2-2 (TMB2386-SWU12343) and gfFM-Chr9-1 (NAU2873-CGR6771)
explain 22.42% and 21.91% of PV. The region between NAU4034 and TMB1296 harbor 30 genes (379 kb) in A05 and
42 genes (49 kb) in DO5 for fiber length along the QTL gfL-Chr5-1 in BC/P population, respectively. In addition, a
total of 142 and 46 epistatic QTLs and QTL x environments (E-QTLs and QQEs) are identified in recombinant inbred
lines in paternal backcross (RIL-P) and paternal backcross (BC/P) populations, respectively.

Conclusions: The present studies provide informative basis for improving cotton fiber quality in different populations.
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Background

Upland cotton (Gossypium hirsutum L.) is one of the most
important sources of natural textile fiber. Among four cul-
tivated Gossypium species, upland cotton shows higher
yield potential and stronger adaptation to diverse
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environments than sea island cotton (G. barbadense), and
accounts for more than 92% output of world cotton cultiva-
tion (Zhang et al. 2015a). However, fiber quality of upland
cotton is not as good as that of sea island cotton. To meet
the diverse demands of textile industry, improving fiber
quality is a key target in upland cotton breeding projects.
Generally, main fiber quality traits consist of fiber
length (FL), fiber uniformity (FU), fiber strength (FS),
fiber elongation (FE), and fiber micronaire (FM). Each
trait has its own genetic mechanism (Ijaz et al. 2019).
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Among 4 892 QTLs in Cotton QTLdb database (Yu et al.
2014), 494, 289, 470, 287 and 395 were detected for FL,
FU, FS, FE and FM, respectively (http://www2.cot-
tonqtldb.org:8081/, Cotton QTLdb, the newly released
version V2.3 on January 24, 2018).

A total of 151, 132, 91, 118 and 234 QTLs were meta-
analyzed for QTL-rich regions for FL, FU, FS, FE and
EM, respectively (Said et al. 2013). A number of QTLs
were located on Chr 5, Chr 19 and Chr 21 (Said et al.
2013, 2015). For fiber quality, numerous QTLs were de-
tected based on mapping in recombinant inbred lines
(RIL) populations of upland cotton (Wu et al. 2009; Sun
et al. 2012; Ning et al. 2014; Tan et al. 2015; Shang et al.
2015; Tang et al. 2015; Zhang et al. 2015b; Jamshed
et al. 2016; Li et al. 2016; Ma et al. 2017; Ijaz et al
2019). However, RIL population can only be dissected
additive and additive x additive effects, not to be dis-
sected dominance and dominance-related genetic effects
due to lacking heterozygous genotypes. Recently, the
permanent RIL populations were used to develop back-
cross populations in rice (Mei et al. 2005) and in cotton
(Shang et al. 2016d). The backcross populations allow
performing repetitive trials as doing in ‘immortalized’ F,
population (Hua et al. 2002, 2003). Seven QTLs were
detected for fiber length and fiber strength by using
backcross population deriving from Guazuncho 2 x
VH8-4602 (Lacape et al. 2005). A total of 44 QTLs were
detected for fiber quality traits on Chr 1, Chr 9 and Chr
21 using (CCRI 8 x Pima 90-53) x CCRI 8 BC;F; inter-
specific population (Yang et al. 2015). Shang et al
(2016d) detected 17, 6, 15, 11 and 21 QTLs for FL, FU,
ES, FE and FM, respectively, in Fg RIL and F9BC; pro-
genies of a hybrid ‘Xinza 1’. Wang et al. (2016) detected
22, 14, 17, 3 and 20 QTLs for the five traits in two par-
ental FgBC,; populations deriving from another hybrid of
upland cotton. In previous study, two markers of
NAU5530 and CIR099 flanking QTLs gFL-c19-2, qFU-
LG3-1 and gFS-LG3 were the same as those in Shang’s
work (2016d). Using a map of single nucleotide poly-
morphism (SNP) markers, one fiber length hotspot was
observed on Chr 5 carrying three QTLs (Li et al. 2016).
Nineteen clusters harbored favorable alleles from G. bar-
badense for two or three fiber quality traits (Shi et al
2020). Additionally, four potential candidate genes for
fiber length on Chr Dt7 were found using genotyping by
sequencing by genome-wide association studies (GWAS)
(Su et al. 2016). Previous studies indicated that one RIL
population and its two BCF; populations could increase
the power of QTL detection (Shang et al. 2016d; Wang
et al. 2016). It offers opportunity to dissect QTLs for
fiber quality traits using multiple populations of upland
cotton.

Cotton genomes for diploid species (Paterson et al.
2012; Wang et al. 2012a; Li et al. 2014; Du et al. 2018)
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and tetraploid genomes (Li et al. 2015; Liu et al. 2015;
Yuan et al. 2015; Zhang et al. 2015a) have been released
recently. New versions of reference genomes have re-
cently been released in cotton (Fang et al. 2017a; Wang
et al. 2019; Hu et al. 2019). These genomic analyses in
cotton facilitate applications of SNP markers (Ali et al.
2018) and GWAS for fiber quality (Fang et al. 2017b;
Ma et al. 2018b). It is very important to detect novel
QTLs and to validate the reported QTLs using diverse
populations or accessions. In previous studies, serial gen-
etic analyses were performed in multiple segregating
populations across multiple years and various locations,
including F,, F,. 3, RIL and BC/M population deriving
from the hybrid Xinza 1’ (Liang et al. 2013; Liang et al.
2015; Shang et al. 2015, 2016a, 2016b, 2016¢, 2016d; Ma
et al. 2017, 2018a, 2019). A total of 111 quantitative trait
loci (QTLs) were detected for fiber quality traits using
four populations derived from RIL (XZ) and backcross
(XZV) hybrids (Shang et al. 2016d). A total of 55 QTLs
were detected and found distributed in 21 chromosomes
using BC/M population in three locations (Ma et al
2017). In addition, 32 QTLs at five stages, 24 conditional
QTLs at four intervals were both detected for plant
height at different stages (Ma et al. 2018a). Meanwhile,
26 and 27 QTLs including heterotic loci were identified
in BC/P and BC/M populations, respectively (Ma et al.
2019). In addition, 10 and 16 clusters were improved
more than one trait for fiber quality and vyield-
components, respectively (Ma et al. 2017; Ma et al.
2019). In order to dissect genetic components of fiber
quality, we developed BCF; progenies population based
on RIL population by backcrossing with the paternal
parent of Xinza 1. Here we term as paternal backcross
population (BC/P population for short). We generated
additional 177 BCF; crosses for BC/P populations by
backcrossing the 177 RI lines as current female parents
to GX100-2 (the original male parent), respectively. De-
tection of novel QTLs and comparison analysis were
performed for fiber quality traits using BC/P, BC/M and
RIL populations.

Materials and methods

Plant materials and populations development

The intraspecific F;;, recombinant inbred lines (RIL)
were inbred for 177 individuals by single seed descent
method, which were derived from an upland cotton hy-
brid “Xinza 1”7 (GX 1135x GX 100-2) (Shang et al.
2016a). The parental backcross (BC/P) population was
obtained by backcrossing the original male parent
(GX100-2) to 177 RIL, respectively. The maternal back-
cross (BC/M) population is referred to previous studies
(Ma et al. 2017; Ma et al. 2019). The GX100-2, “Xinza
17, GX1135 and a competition hybrid “Ruiza 816” in the
Yellow River Region were performed in every
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experimental trial as the control set. In present study,
we name the maternal and paternal backcross popula-
tions as BC/M and BC/P populations, respectively, so as
RIL-M and RIL-P populations for the RIL population in
four BC/M and BC/P field trials.

Field trial arrangement, sampling and trait evaluation
Four trials were performed at two locations in Hebei
province, China: E1. Quzhou Experimental Station in
Handan city; E2, Guoxin Seed Company Ltd. in Cangz-
hou city. Three BC/P field trials were conducted in
2015E2 (year + location), 2016E1, 2016E2. At the same
time, one maternal BC trial was conducted in 2016E2 as
control trial. The field trials were designed and planted
identical to previous studes for BC/M field trials in
2012E1, 2012E2 and 2012E4 (E4, Xiangyang city in
Hubei province, China; Shang et al. 2016a), same as
2015E1, 2015E2, and 2015E3 (E3: Wuhan city in Hubei
province, China; Ma et al. 2017, 2018a, 2019). Field
management followed local conventional standard field
practice.

Twenty-five naturally opening bolls in the middle of
plants were hand-harvested for each plot at mature stage
in all three environments. Fiber samples were ginned
and sampled for measurements of fiber quality traits
with HVI 900 instrument (Uster_HVISpectrum, Spinlab,
USA) at Cotton Fiber Quality Inspection and Testing
Center of Ministry of Agriculture and Rural Affairs (An-
yang, China) (Shang et al. 2016d; Shahzad et al. 2019).
Five fiber quality traits were measured, containing 2.5%
fiber span length (FL, mm), fiber uniformity (FU, %),
fiber strength (FS, cN-tex™ Y, fiber elongation (FE), and
fiber micronaire (FM) as usual (Zhang et al. 2005).

Genetic map and data analysis

Genetic map is based on RIL population published be-
fore (Shang et al. 2016¢), in which a total of 653 loci
based on SSR markers distributed on 31 linkage groups
and anchored on 26 chromosomes, covering 3 889.9 cM
(88.20%) of cotton genome with average interval of 6.2
cM (Ma et al. 2017, 2018a, 2019). The genotype for each
maternal F14,BC; was deduced on the basis of the RIL
genotype (Shang et al. 2016a, 2016b, 2016c¢).

Basic statistical analysis was implemented by the software
SPSS (Version 19.0, SPSS, Chicago). Using variance ana-
lysis, heritability was calculated according to the equation
as 2 = 6% / [0 + (526>< £) / env], where 8%, 52G>< rand
env refer to the genotypic variance, genotype-by-
environment interaction variance and the number of the
environments, respectively.

Composite interval mapping (CIM) method was used
for QTL mapping in the confidence interval of 95%. The
software QTL Cartographer (Version 2.5) (Zeng 1994;
Wang et al. 2012b) was used to map single-locus QTL
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and to estimate the genetic effect. The threshold of loga-
rithm of odds (LOD) was estimated to declare a suggestive
QTL after 1 000 permutation times, whereas QTL in an-
other environment or population with LOD of at least 2.0
was considered as common QTL (Liang et al. 2013; Shang
et al. 2015, 2016d). According to the position linking and
sharing of common markers, QTLs detected in different
populations were regarded as one common QTL (Shao
et al. 2014; Shang et al. 2016d; Ma et al. 2017).

The QTL IciMapping 4.1 (www.isbreeding.net) was
conducted by two-locus analysis using inclusive compos-
ite interval mapping (ICIM) method (Shang et al. 2016d;
Ma et al. 2017). The main-effect QTL (M-QTL) and its
environmental interaction (QTL x environment, QE),
epistatic QTLs (E-QTLs) and its environmental interac-
tions (QTLs x environment, QQE) were conducted
using RIL-P and BC/P datasets under multiple environ-
ments in three BC/P trials. A threshold LOD 2.5 and 5
scores were used to declare significant M-QTL and E-
QTLs, respectively.

Results

Trait performance in two populations

The phenotype of five fiber quality traits performed dif-
ferently between the ‘original’ maternal parent ‘GX1135’
of Xinza 1 and the ‘original’ male parent ‘GX100-2
(Table 1). The hybrid ‘Xinza 1’showed no significant hy-
brid vigor of F; for fiber quality traits ranging from -
3.17% to 1.53% of mid-parent heterosis (MPH). Pheno-
typic variation ranged from 2.63% to 8.53% in both BC
and RIL populations for fiber length (FL), fiber strength
(FS) and fiber micronaire (FM). However, the values
ranged from 0.87% to 1.23% for fiber uniformity (FU)
and fiber elongation (FE).

Genotype variance and environment variance showed
significant variation for five traits at level of 0.05 in RIL
and BC populations (Table 2). Fiber length (FL) and
fiber uniformity (FU) increased in BC/P population in
comparison with that in BC/M population, whereas fiber
micronaire (FM) reduced. Fiber length (FL) and fiber
strength (FS) showed larger heritability of 91.82% and
91.10%, respectively, in RIL-P population. The heritabil-
ity decreased to 86.63% and 81.93% for FL and FS, re-
spectively, in BC/P population (Table 2). The results
indicated wider range of phenotypic variation and larger
heritability in RIL-P population than those in BC/P
population for five fiber quality traits.

Correlation analysis among fiber quality traits in multiple

populations

The significant correlation coefficients were calculated for
five fiber quality traits in BC/P, BC/M, RIL-P and RIL-M
populations in 2015E2, 2016E1 and 2016E2 (Table 3).
Fiber length (FL) correlated significantly and positively
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Table 2 Results of ANOVA and heritability for yield and its components in different populations from two backcross trials

Trait Source MS MS
S;iaﬂom MS ? RIL-P H /% ° MS ? BC/P H /% b BC/P MS @ RIL-M H /% MS @ BC/M H /%
FL G 4753 91.82 2072% 86.63 2072% 5213* 9178 2.021% 79.62
E 291.886** 240.054** 240.054%* 269.064** 297.752%%
GxE 0.864 0652 0652 0.955 1053
Error 0814 0615 0615 0.888 0.998
FU G 1.880* 71.06 1.490* 69.35 1.490* 2.828** 7869 1.785% 7200
E 110536 95.792%* 95.792%* 259.923** 272.103**
GxE 155 1.368 1.368 1.524 1364
Error 1494 1214 1214 1548 1437
FS G 7.906** 91.10 3.044% 81.93 3.044* 8901 89.71 4039** 8195
E 369.073** 333408** 333408 159.82%* 85482
GxE 1.625* 1365 1365 207 171
Error 1381 1298 1298 1.989 1919
FE G 0.022%* 86.83 0.010% 79.87 0.010% 0.032%* 88.26 0.014** 7881
E 6.779% 6.063* 6.063* 6.453** 6.614%
GxE 0.007 0.005 0.005 0.009%* 0.008
Error 0.006 0.005 0.005 0.007 0.007
FM G 0576 89.00 02617 81.25 02617 0439** 85.33 0.202% 7637
E 6.24%* 2636* 2636** 11.665% 13,089
GxE 0.154** 0.117 0.117 0.158 0131
Error 0.119 0.128 0.128 0.137 0.112

G genotype, E environment, G x E, genotypexenvironment. *Mean square. ®Heritability. * and “** indicate that the correlation is significant at 0.05 and 0.01
probability levels, respectively

Table 3 Correlation analyses between five fiber quality traits in RIL population and its BC progenies

Trait Env. FL FU FS FE
RIL BC RIL BC RIL BC RIL BC
FU 2016E1 0013 —0.096
2015E2 0.226%* 0.222%*
2016E2 0.497** 0.381**
2016E2* 0438** 0.178*
FS 2016E1 0.656** 0616** —-0.030 —-0.083
2015E2 0.718** 0.699** 0.217%* 0.075
2016E2 0.754** 0.581** 0.403** 0.060
2016E2* 0.784%* 0.525%* 0.305%* 0.043
FE 2016E1 0.659** 0.617** 0.128 0.105 0.530%* 0.511**
2015E2 0.627** 0476** 0.369** 0.163* 0.507** 0.533**
2016E2 0.754%* 0.737%* 0454** 0.252%* 0.710%* 0.696**
2016E2* 0.813** 0.535%* 0414 0.249%* 0.751%* 0.486**
FM 2016E1 —0.237** —0.202** 0.295%* 0.314** —0.320** —0404** —-0.015 0016
2015E2 —0439** —0.334** 0.088 0.049 —0428** —0.390** —-0.102 0.047
2016E2 —0.443** -0.124 —0.053 0.093 —0.497** —0.261** —0.206** 0.004
2016E2* —0.426** —0.277** 0.063 0.142 —0.434** —0482** —0219** —-0.020

* **' indicate that the correlation is significant at 0.05 and 0.01 probability levels, respectively. RIL, recombinant inbred line population in maternal and paternal
testcross trials, respectively; BC, backcross populations including maternal and paternal BC (BC/M and BC/P) populations. *: referred to QTLs identified in one BC/M
trial, the remaining QTLs identified in three BC/P trials
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with fiber uniformity (FU), fiber strength (FS) and fiber
elongation (FE) in these populations except FU in 2016E1.
However, fiber micronaire (FM) showed significant nega-
tive correlation with FL and FS in the populations. These
results are similar to the previous researches (Liang et al.
2013; Shang et al. 2016d; Ma et al. 2019).

The correlations have similar tendency among BC/P
and BC/M populations. In both BC populations, no sig-
nificant correlation was detected between FU and FS.
However, the majority of correlation values decreased in
both BC/P and BC/M populations after backcrossing to
either of parents.

Single locus QTL analysis

In four field trials, a total of 70 QTLs controlling fiber
quality were detected in three corresponding populations
of BC/P, RIL-P, BC/M and RIL-M, explaining 5.01%—
22.42% of phenotypic variance (PV) (Table S1, Fig. 1).
These QTLs anchored on 17 chromosomes accordingly.

For fiber length, 9, 1 and 8 QTLs were identified in
BC/P, BC/M and RIL populations, respectively. The
qFL-Chr5-2 was simultaneously identified in 2015E2
and 2016E1 in the BC/P population, explaining 7.46%
and 7.82% of PV, respectively. The gFL-Chri-2 was sim-
ultaneously detected in 2016E1 and 2016E2 in RIL
population, explaining 7.01% and 6.91% of PV, respect-
ively. The gFL-Chri9-1 was verified in two different
populations, explaining 17.98% of PV in BC/P popula-
tion and 11.05% of PV in RIL population. Among eight
QTLs detected in RIL population, three QTLs showed
additive effects originated from GX1135 alleles whereas
five QTLs showed additive effects offered by GX100-2
alleles. A total of three QTLs (¢FL-Chr5-1, gFL-Chr5-2
and gFL-Chr5-3) were distributed on chromosome 5
(Chr 5), and three QTLs (gFL-Chri-1, gFL-Chrl-2 and
qFL-Chr1-3) were distributed on Chr 1.

A total of 14 QTLs were detected for fiber uniformity
(FU) explaining 8.76%—11.86% of PV, which distributed
on 11 different chromosomes. Seven and five QTLs were
identified in BC/P and RIL populations, respectively. No
common QTL was identified in multiple populations or
multiple environments for FU. gFU-Chr6-1 increased
FU providing alleles by GX1135 in RIL population,
explaining 11.86% of PV.

For fiber strength (FS), a total of 10 QTLs were de-
tected on seven chromosomes, explaining 6.27%—-22.09%
of PV. Two common QTLs were identified. The gFS-
Chr3-1 was detected in BC/P population alone explain-
ing high as 22.09% of PV in 2016E2. The gFS-Chr21-2
was detected in BC/P, BC/M and RIL populations at the
same time across 2016E1 and 2016E2, explaining 6.27%—
13.37% of PV.

In the BC/P, BC/M and RIL populations, 8, 3 and 8
QTLs were identified for fiber elongation (FE),
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respectively. Four common QTLs were detected at least
in two populations, including gFE-Chr2-2, gFE-Chr2-3,
qFE-Chr3—1, and gFE-Chr21-2. The qFE-chr2—3 was de-
tected in BC/P, BC/M and RIL populations and ex-
plained 7.02% of PV on average. The gFE-chr3—1 was
also detected in BC/M population in same environment
of 2016E2, explaining 12.17% of PV in BC/P population.
The gFE-Chr2-2 explained 22.42% of PV in RIL popula-
tion in 2016E1 and was identified in BC/M population
in 2016E2. The gFE-Chr21-2 was detected in BC/P and
RIL populations.

A total of 16 QTLs were detected for fiber micronaire.
They were located on 12 different chromosomes. The
qFM-Chr9-2 was identified in BC/M and RIL popula-
tions in 2016E2, explaining 21.91% of PV. At the same
time, the QTLs were detected in three environments of
2015E2, 2016E1 and 2016E2. The QTL gFM-Chri5-1
was simultaneously detected in RIL population in
2016E1 and in BC/M population in 2016E2, explaining
12.36% and 5.46% of PV, respectively. All of six QTLs
were detected in RIL population and fiber micronaire in-
creased over 0.10 value, which donated increasing addi-
tive effect alleles by GX1135, containing gFM-Chr9-1,
qFM-Chr9-2, qFM-Chr12-1, qFM-Chri4—-1, qFM-
Chri4-2, and gFM-Chr15-1. In summary, 35 QTL ex-
plained 5.01%—-22.09% of PV on average in BC/P popula-
tion in 2015E2, 2016E1 and 2016E2. Among them, a
total of 19 QTLs explained larger than 10.00% of PV.
Then, we identified 10 QTLs in BC/M population,
explaining 5.31%-14.53% of PV. Thirty-five QTLs
existed in RIL-P and RIL-M populations explaining
5.13%-21.91% of PV in four environments above. In
total, 12 common QTLs were detected in multiple envi-
ronments or in multiple populations of BC/P, BC/M,
RIL-P or RIL-M populations including previous studies
(Table S1, S5).

Pleiotropic effects

We also observed 5 pleiotropic regions controlling at
least two fiber quality traits on Chr 9, Chr 18 and Chr
21 (Fig. 1). A pleiotropic region flanking with
SWU15511- SWU15413 on Chr 9 increased the values
for FL and FS, showing increased additive effects origi-
nated from alleles of GX100-2. The NAU2873-
CGR6771 on Chr 9 contributed alleles to FS but also in-
creased the FM. The region of SWU0830-HAU2004-
CGR5602 contained gFU-Chr21-1 in BC/P population
and gFE-Chr21-1 in RIL-P population. SWU0189-
CGR5808 on Chr 21 flanked along gFS-Chr21-1, gFS-
Chr21-2 and qFE-Chr21-2, all of which showed increas-
ing additive effects originated from alleles of GX100-2.
The region of SWU15511- SWU15413 on Chr 18 con-
trolled fiber length and fiber elongation at the same
time.
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Digenic and environmental interaction in three BC/P traits
In three repetitive BC/P trials, a total of 38 and 56 M-
QTLs and environmental interactions (QTL x environ-
ment, QE) were identified in BC/P and RIL-P popula-
tions, respectively (Table 4, Table S2, Table S3). The
result explained 2.53%-3.13% and 2.63%-3.41% of PV,
respectively, on average in the populations. Environmen-
tal effect prevailed in both BC/P and RIL-P populations.

However, environment and M-QTL interacted with
1.24% of PV in the BC/P population while with 0.90% of
PV in RIL-P population.

Forty-six E-QTLs and 142 QQE (digenic interactions
x environment) were respectively identified in BC/P and
RIL-P populations (Table S4, Table S5). Eighteen E-
QTLs and QQE explained 4.17% of PV on average in
RIL-P population, while nine E-QTLs and QQE
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Table 4 Summary on M-QTL and E-QTLs controlling fiber
quality traits in BC/P and RIL-P datasets in BC/P trials

Trait BC/P RIL-P
M-QTL®  n° V(A% € VIAE) /% n°  VIA%S  V(AE) /% ©
FL 1313 0.70 13 263 027

FU 3 302 3.00 7 315 240

FS 11 253 067 14 292 025

FE 0o - - 12 277 059

FM 13 261 099 10 341 101

Mean - 282 134 - 298 0.90

E-QTL® n® V(AA) /% V(AAE)%S n  V(AA)%S V(AAE) /%"
FL 16 344 030 52 433 022

FU 1M 193 212 0o - -

FS 5 332 052 44 415 024

FE 1076 001 18 442 024

FM 13 344 073 28 377 023

Mean - 2.58 0.74 - 417 023

? M-QTLs and E-QTLs refer to the main effect QTL and epistasis QTLs by
environments. ® The number of QTLs. © V(A) /%, V(AAE) /%, V(AA) /% and
V(AAE) /%, the total proportion of phenotypic variation on average explained
by single QTL, epistatic QTLs (AA) and them by environments (AE or AAE) at
the current scanning position, respectively

explained 2.58% of PV on average in BC/P populations
(Table 4). On average, the number of both types of M-QTL
and E-QTL was larger in RIL populations than that in BC
populations. The epistatic interactions contributed more to
fiber quality than M-QTLs did in RIL-P population.

To sum up, 20 (42.5%) and 101 (71.13%) pairs of E-
QTLs and QQE contained M-QTLs and QEs in BC/P
and RIL-P populations, respectively (Table 5). We de-
tected about 3-fold epistatic QTLs in RIL populations
than QTLs in BC/P population, and 19.01% M-QTLs
participated epistasis between M-QTL and M-QTL.
Three types of epistasis were checked: I) both loci were
M-QTLs; II) either locus between two loci was M-QTL;
III) both loci were no M-QTLs (Shang et al. 2016d; Ma
et al. 2019). Apparently, 27 (57.45%) epistatic QTLs of

Table 5 Types of epistasis detected for fiber quality traits in the
RIL-P and BC/P populations

Trait Type of epistasis®

RIL-P BC/P

I Il M1l Total | Il M1l Total
Fiber length 8 29 15 52 2 5 9 16
Fiber uniformity 0 0 0 0 2 5 4 11
Fiber strength 0 22 12 44 0 1 5 6
Fiber elongation 4 6 8 18 0 0 1 1
Micronaire 5 17 6 28 1 4 8 13
Total 27 74 31 142 5 15 27 47

2 type |, both loci were M-QTLs; type I, either locus among two loci was M-
QTL, and type lll, both loci were no M-QTLs
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type III was the most popular type in epistatic styles in
BC/P population whereas it was 31 (52.11%) epistatic
QTLs of type II in RIL-P population (Table 5). The re-
sults indicated that epistasis played more vital role in
improving fiber quality in RIL populations of upland
cotton. The result was consistent to the previous result
that epistatic QTLs with significant additive x additive
effects were identified for fiber quality traits (Wang et al.
2017; Ma et al. 2019).

Discussion

In present study, the paternal BC (BC/P) population was
constructed to explore the genetic mechanism of fiber
quality, following previous studies in maternal BC (BC/
M) population (Shang et al. 2016d; Ma et al. 2017,
2019). The backcross design has the obvious advantages:
(I) dissecting the genetic components between paternal
and maternal backcross populations; (II) identifying
more novel QTLs for important traits using multiple
corresponding populations (BC/P, BC/M and RIL) origi-
nated from the same hybrid; and (III) allowing to gener-
ate enough hybrid seeds when needed, similar to IF,
population. Here we detected 19 and 8 QTLs alone in
BC/P and BC/M populations, respectively. Three QTLs
shared in both BC populations for fiber strength and
fiber elongation, including gFS-Chr21-2, qFE-Chr2-3
and qFE-Chr3—1. The result indicated that the
remaining elite alleles (84.21%) showed increasing addi-
tive effects originated from male parent for fiber quality
in BC/P population. Therefore, present study was signifi-
cant in separating novel elite alleles of male parent for
fiber quality.

The identification of stable QTLs (including common
QTLs) across multiple environments and multiple popu-
lations plays an essential role in marker-assisted selec-
tion (MAS) (Jamshed et al. 2016). In present study, a
total of 12 common QTLs were simultaneously identi-
fied in more than one environment(s) or population(s)
(Table S1). They distributed on Chr 1, Chr 2, Chr 3, Chr
5, Chr 9, Chr 15, Chr 19 and Chr 21. A total of 13 single
locus QTLs (35.14%) for fiber quality were common in
comparison with the previous studies in multiple years
and multiple locations shown in Table S6 (Shang et al.
2016d; Ma et al. 2017). The QTLs verified each other in
the RIL population and its BC progenies, suggesting that
it is reasonable and effective to map QTLs using differ-
ent populations across multiple environments and mul-
tiple years. The experiment design and the continuous
study in our lab verified these results in present study.
Among the 13 QTLs, 10 QTLs explained the larger than
10% of PV. Five QTLs were identified in Shang et al.” re-
sults (2016d) and Ma et al’ results (2017), including
qFL-Chr5-1, qFL-Chr5-2, qFL-Chr5-3, qFS-Chr21-1
and qFE-Chr2-1 (Table S6). The QTL increased 0.31
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mm fiber length (FL) on average, suggesting the signifi-
cant roles and important regions for FL. In addition, gLP-
Chr5-3 and gBNP-Chr5-2 increased the lint percentage
and the boll number per plant, along 333 kb (48 genes)
pleiotropic regions along the SSR marker TMB1296 (Ma
et al. 2019). However, no gene was reported along the re-
gion. These suggested QTLs were valuable for follow-up
breeding program, so as to facilitate fine mapping and fa-
vorable gene pyramiding project (Shao et al. 2014).

In addition, the marker BNL1495 flanking gFE-Chri13—1
in present study was the same to the marker flanking gFL-
chri3-2 in Liang et al’ study (2013). The marker
NAU3384 of gFS-Chri-1 flanked to the NAU3385, which
was detected for lint percentage and lint index in Chr 1 in
the previous study (Zhang et al. 2013). Nine SSR markers
flanking QTLs for fiber quality traits in Tang’s work were
in common with our genetic map (2015). The markers
PGML3120 and PGML4657 flanking gFS24.1, gFE24.1 and
qFM24.1, were linked to the SWU13256 and SWU13267 of
qFL-Chr24—1 and qFE-Chr24-1 in present study. The
stable gFS-Chr21-2 in present study shared a common SSR
marker BNL3171 flanking a stable QTL of qUHM-21-1
controlling fiber length in previous study (Wang et al
2017). The gFS-Chr21-2 was also detected in 2015E3 for
improving fiber strength (Ma et al. 2017). The gFS07.1 con-
trolling fiber strength was fine-mapped to a 62.6-kb region,
but no same marker was found with NAU3181 and
SHINO0376 for gFU-Chr7-1 in the present study (Fang et al.
2017c). These SSR markers are valuable for fiber quality
breeding in terms of previous studies in different varieties
of cotton. The classic method for mapping QTL and tag-
ging genes had improved plant improvement programs by
using marker-assisted selection (MAS). Indeed, in many
previous studies involving SSR markers and/or phenotypes,
QTLs were obtained for important traits (Zhang et al. 2005;
Zhang et al. 2015¢; Xu et al. 2017). The artificial selected
plants had been bred for varieties using MAS to major crop
breeding programs even by long selection cycles. With the
decreasing cost and increasing SNP density by next-
generation sequencing approach, the strategy of genomic
selection (GS) will consider genetic effects across whole
genome. Much improvment in accuracy and efficiency
could be expected if combined the results from both the
classic method and GS strategy.

In present study, a total of 35 QTLs were detected in
the BC/P population. Taking all the detected QTLs to-
gether, 23 (65.71%) novel QTLs were identified from
BC/P populations alone, and 9 (25.71%) were detected in
both BC/M and BC/P populations. The results indicated
that many unique QTLs can be detected solely by back-
crossing male parents to F; plants, which are available
for marker-assistant breeding. Interestingly, 5 in 10
(50%) and 28 in 35 (80%) QTLs were only detected in
BC/M and RIL populations, respectively.
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The epistatic effects and environmental interactions
existed simultaneously for fiber quality traits as well as
other traits. At two-locus level, we detected a number of in-
teractions under environments for fiber quality traits in
both populations (Table 4). Three types of epistasis combi-
nations were observed (Table 5). However, epistasis QTLs
influenced fiber quality by Type III (57.45%) in BC/P popu-
lation. Differently, epistasis influenced fiber quality by Type
I and Type II (71.13%) in RIL population. In addition, 3-
fold epistasis QTLs was detected in RIL-P population. The
results indicate that epistasis played roles in different gen-
etic modes to control fiber quality. In particular, no E-QTL
was identified for fiber uniformity (FU). Another interesting
result is that epistasis is another vital genetic effect affecting
fiber quality traits (Shang et al. 2016d). Similar to previous
study, Wang et al. (2006) indicated that both epistasis effect
and single-locus effect of QTLs played an important genetic
role in cotton fiber quality.

In present study, five QTLs increased fiber micronaire
(FM) values from 0.06 to 0.18 (Table S1). Mean values
ranged 4.71-5.18 on average in the RIL-P and BC/P
populations of Xinza 1. In other words, fiber quality
ranks from B grade (3.5-3.6, 4.3-4.9) to C grade (< 34,
>5.0) for fiber micronaire. At the same time, FM dis-
played negative correlation with FL, FU, FS and FE.
Therefore, we should avoid exploiting the QTL regions
in breeding project. Larger lint yield potential and well
fiber quality are the key aims in cotton breeding pro-
gram, and negative correlation between yield and fiber
quality hinders genetic gains in cotton breeding (Yang
et al. 2015). Many important heterotic loci were detected
in our previous studies (Shang et al. 2016a; Ma et al.
2019), and some heterotic loci were also identified ac-
counting for improving fiber quality (Shang et al. 2016d;
Ma et al. 2017). The pleiotropic regions should be pay-
ing more attention in further research so as to improve
fiber quality and to increase yield in breeding program.

Conclusions

In present study, the paternal BC (BC/P) population was
constructed to explore the genetic mechanism of fiber
quality, and was detected 19 and 8 QTLs alone in BC/P
and BC/M populations, respectively. Three QTLs shared
in both BC populations for fiber strength and fiber
elongation, including gFS-Chr21-2, qFE-Chr2-3 and
qFE-Chr3—1. The present study was significant in separ-
ating novel elite alleles of male parent for fiber quality.
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