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Abstract

Background: Plant height (PH) and fruit branch number (FBN) are important traits for improving yield and
mechanical harvesting of cotton. In order to identify genes of PH and FBN in cotton germplasms to develop
superior cultivars, quantitative trait loci (QTLs) for these traits were detected based on the phenotypic evaluation
data in nine environments across four locations and 4 years and a previously reported genetic linkage map of an
recombinant inbred line (RIL) population of upland cotton.

Results: In total, 53 QTLs of PH and FBN, were identified on 21 chromosomes of the cotton genome except
chromosomes c02, c09-c11, and c22. For PH, 27 QTLs explaining 3.81%–8.54% proportions of phenotypic variance
were identified on 18 chromosomes except c02, c08-c12, c15, and c22. For FBN, 26 QTLs explaining 3.23%–11.00%
proportions of phenotypic variance were identified on 16 chromosomes except c02-c03, c06, c09-c11, c17, c22-c23,
and c25. Eight QTLs were simultaneously identified in at least two environments. Three QTL clusters containing
seven QTLs were identified on three chromosomes (c01, c18 and c21). Eleven QTLs were the same as previously
reported ones, while the rest were newly identified.

Conclusions: The QTLs and QTL clusters identified in the current study will be helpful to further understand the
genetic mechanism of PH and FBN development of cotton and will enhance the development of excellent cultivars
for mechanical managements in cotton production.
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Introduction
Agronomic traits, especially plant morphological attri-
butes such as PH, FBN, height of the node of first fruit-
ing branch, and angle between stem and fruiting branch,
play a decisive role in the architectural construction of
crops, which impact agricultural practices, including rea-
sonable increases in planting density and mechanical
managements of crops (Mei et al. 2016; Shang et al.
2016). Among them, PH and FBN are important plant
morphological attributes, which have a certain impact
on the formation of yield (Ge et al. 2012; Hussain et al.

2000; Li et al. 2010; Tang et al. 2009). In rice, a point
mutation in OsSPL14 perturbs OsmiR156-directed regu-
lation of OsSPL14, generating an ideal plant with a re-
duced tiller number, increased lodging resistance and
enhanced grain yield (Jiao et al. 2010; Miura et al. 2010).
In maize, a valuable PH gene ZmRPH1 was demon-
strated to be useful in molecular breeding to improve
PH and lodging resistant traits (Li et al. 2019).
Cotton is an important cash crop and a major source of

natural fiber for the textile industry (Paterson et al. 2012).
Upland cotton (Gossypium hirsutum L.) is planted world-
wide because of its high yield and good fiber quality (Chen
et al. 2007; Huang et al. 2017). PH is an important compo-
nent of ideal plant architecture and plays an important
role in cotton breeding (Jiao et al. 2010; Ma et al. 2019b;
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Miura et al. 2010; Wang et al. 2018). Studies demonstrated
that PH and FBN had important effects on cotton yield
and mechanical harvesting (Su et al. 2018; Ma et al.
2019b), but it is still necessary for researchers to under-
stand the genetic basis of PH and FBN and how they im-
pact plant architecture (Qi et al. 2017; Shang et al. 2016;
Song and Zhang 2009; Wang et al. 2006; Zhang et al.
2006). Therefore, further study on these agronomic traits
will be of great significance for cotton plant-type breeding
and the application and distribution of mechanical har-
vesting technologies in cotton production.
The genetic linkage maps have been used to detect

quantitative trait locus (QTL) for cotton fiber quality,
yield and various agronomic traits, which is of great sig-
nificance for both marker-assisted selection as well as
functional studies of candidate genes (Ma et al. 2019a;
Zhang et al. 2016). However, the disadvantages of previ-
ous genetic maps, such as low marker density, asymmet-
ric distribution of mapped markers, and unavailability of
reference genomes for upland cotton, hindered the
above-mentioned applications of the QTL detection re-
sults (Deschamps et al. 2012; Jamshed et al. 2016; Yang
et al. 2015). Due to the rapid development of high-
throughput sequencing technologies, the reduction of
sequencing cost, and the establishment of the reference
genome of upland cotton (TM-1), a number of high-
density genetic maps have been constructed by single
nucleotide polymorphism (SNP) markers including
genotyping by sequencing (GBS) (Diouf et al. 2018; Qi
et al. 2017), restriction-site associated DNA sequencing
(RAD-Seq) (Hegarty et al. 2013; Kundu et al. 2015;
Wang et al. 2017), specific locus-amplified fragment se-
quencing (SLAF-seq) (Ali et al. 2018; Zhang et al. 2016),
CottonSNP63K array (Hulse-Kemp et al. 2015; Li et al.
2016; Li et al. 2018a; Zhang et al. 2016), and Cot-
tonSNP80K array (Cai et al. 2017; Tan et al. 2018; Liu
et al. 2018; Zou et al. 2018). These high-density genetic
maps significantly improved QTL detection accuracy
(Ma et al. 2019a; Su et al. 2018; Jia et al. 2016).
This study was based on a previously constructed

high-density genetic map through chip-SNP genotyping
(cottonSNP80K array) (Cai et al., 2017; Liu et al., 2018).
The field phenotypes of PH and FBN were evaluated
and analyzed across multiple environments, and their
QTLs were detected. Our results will be helpful to fur-
ther understand the genetic mechanism of these import-
ant agronomic traits and lay a promising foundation for
developing excellent cultivars to meet the challenges of
mechanical harvesting technologies in the future.

Materials and methods
Experimental materials and field management
A segregation population consisting of 231 F6:8 RIL indi-
viduals was developed from an intra-specific cross of G.

hirsutum between two homozygous cultivars Lumian-
yan28 (LMY28) and Xinluzao24 (XLZ24). The attributes
of the two parental lines and the development proce-
dures of the population were previously described (Liu
et al. 2018). Briefly, the cross was made in an experimen-
tal farm at the Institute of Cotton Research of Chinese
Academy of Agricultural Sciences in Anyang in 2008.
Then, the RIL population was developed via multiple cy-
cles of selfing, and a random single plant selection was
made the F6 generation to form F6:8 seeds. F6:8 and be-
yond generations were regarded as RILs. From 2013 to
2016, phenotypes of the target traits of the RILs were
evaluated in three different locations throughout China
with a randomized complete block design in two bio-
logical replications in each environment.

Phenotyping
The phenotypes of PH and FBN were evaluated
throughout a four-year-three-location experiment ar-
rangement, composed from a total of six environ-
ments (Table 1). PH was usually evaluated from the
cotyledonary node to the apex of the stem. In the ex-
periment locations of this study, removing the stem
apex was a normal practice in cotton production for
plant architectural control. According to local prac-
tices, the stem apex was pinched off manually (in An-
yang and Quzhou) or with chemicals (in Kuerle) in
July, and PH was evaluated in September before har-
vest. PH was measured immediately from the soil sur-
face to the pinching point of the plant. FBN was the
number of effective branches on which mature bolls
set. These phenotype data across multiple environ-
ments were collected and analyzed with SPSS21.0
software. The heritability of PH and FBN across envi-
ronments was evaluated by QTLIciMapping software
(version 4.1) (Meng et al. 2015; Ma et al. 2019a).

QTL mapping
QTLs for the target traits were identified with Windows
QTL Cartographer 2.5 software (Wang et al. 2007) with
composite interval mapping (CIM) algorithms. The
threshold of logarithm of odds (LOD) for a significant
QTL declaration was calculated by a 1 000 permutations
test and a walking speed of 1.0 cM. QTLs for the same
trait identified in different environments were regarded
as the same QTL when their confidence intervals were
fully or partially overlapped. The QTL identified at least
in two environments was declared as a stable one. No-
menclature of QTL was designated following Sun’s de-
scription (Sun et al. 2012). MapChart 2.2 (Voorrips
2002) was used to graphically present the QTLs on the
genetic map.
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The candidate gene annotation
The genes contained in the physical interval of stable
QTLs underwent Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses
using BMKCloud (www.biocloud.net). The transcrip-
tome sequencing data of root, stem, and leaf of TM-1
(Zhang et al. 2015) were referenced to reveal the expres-
sion pattern of candidate genes. The expression heatmap
was drawn by TBtools software (Chen et al. 2018).

Result
Evaluation of phenotype performances
We observed that all of the traits showed continuous
variations and that a transgressive segregation
phenomenon was detected. The values of skewness and
kurtosis of all traits in six environments showed that
they fit normal distributions (Table 2). The heritabilities
of PH and FBN were 0.76 and 0.52, respectively. We also
identified significant G × E influences for both PH and
FBN (Additional file 1: Table S1).

QTL mapping the target traits
A total of 53 QTLs for the target traits were identified
on 21 chromosomes except c02, c09-c11, and c22, using
the composite interval mapping method. These QTLs
could explain 3.23%–11.00% of the observed phenotypic
variances (PVs) (Additional file 2: Table S2). Among

them, eight QTLs were simultaneously identified in at
least two environments on c03-c04, c14, c17-c19, and
c25, which were regarded as stable ones which could ex-
plain 3.29%–8.54% of the total observed PVs (Fig. 1;
Table 3).

Plant height
Twenty-seven QTLs for PH were detected, which could
explain 3.81%–8.54% of the observed PVs and were dis-
tributed on 18 chromosomes except c02, c08-c12, c15,
and c22. Six stable QTLs could be simultaneously de-
tected in at least two environments, with an overall ex-
planation of 3.89%–8.54% of the observed PVs, which
were identified on c03, c04, c17, c19, and c25. That is,
qPH-c03–1, qPH-c04–1, qPH-c04–3, qPH-c17–1, qPH-
c19–1, and qPH-c25–1 could explain 4.53%–4.98%,
3.97%–4.11%, 5.43%–6.84%, 3.89%–5.82%, 7.17%–8.54%,
and 5.77%–7.11% of the observed PV, respectively.

Fruiting branch number
Twenty-six QTLs for FBN were detected on 16 chromo-
somes, except c02-c03, c06, c09-c11, c17, c22-c23, and
c25, which could explain 3.23%–11.00% of the observed
PV. Two stable QTLs on c14 and c18 were simultan-
eously detected in at least two environments, with an
overall explanation of 3.29%–8.49% of the observed PV.
That is, qFBN-c14–1 and qFBN-c18–2 could explain

Table 1 Details of seven environments used to evaluate 231 F6:8 RIL individuals and their parents

Year Environments Abbreviation used Replications Layout (row length (m) ×row spacing (m) × plant spacing (m))

2013 Anyang 13ay 2 5 × 0.8 × 0.25

Quzhou 13qz 2 5 × 0.8 × 0.25

2014 Anyang 14ay 2 5 × 0.8 × 0.25

Kuerle 14kel 2 3 × (0.66+0.10) × 0.12

2015 Anyang 15ay 2 5 × 0.8 × 0.25

2016 Anyang 16ay 2 5 × 0.8 × 0.25

Table 2 The descriptive statistical analysis of the parents and the recombinant inbred lines (F6:8) population
Trait Environment Parents RIL Population

XLZ24 LMY28 Range Minimum Maximum Range Mean Standarddeviation Variance Skewness Kurtosis

PH 13ay 98.70 103.50 −4.80 80.40 117.85 37.45 99.73 7.40 0.07 −0.01 −0.25

13qz 102.40 99.05 3.35 78.55 111.45 32.90 94.37 6.52 0.07 0.15 −0.25

14ay 104.05 94.84 9.21 67.90 110.25 42.35 89.30 9.30 0.10 −0.15 −0.54

14kel 64.14 63.29 0.86 49.14 78.86 29.72 64.11 5.93 0.09 −0.14 −0.36

15ay 99.45 90.15 9.30 75.80 114.95 39.15 93.00 6.88 0.07 0.22 0.13

16ay 84.94 75.38 9.56 74.81 111.89 37.08 91.31 7.51 0.08 0.04 −0.07

FBN 13ay 13.05 13.55 −0.50 10.40 14.95 4.55 12.87 0.85 0.07 −0.30 0.04

13qz 13.85 13.45 0.40 9.90 13.65 3.75 11.79 0.86 0.07 −0.21 −0.58

14ay 12.55 11.50 1.05 5.25 13.15 7.90 10.32 1.72 0.17 −0.92 0.42

14kel 7.79 7.43 0.36 5.43 9.50 4.07 7.68 0.82 0.11 −0.15 −0.56

15ay 14.25 13.45 0.80 11.22 15.25 4.03 13.21 0.82 0.06 −0.14 −0.35

16ay 11.44 12.75 −1.31 8.92 15.24 6.32 12.34 1.17 0.09 −0.61 0.75
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6.23%–8.49% and 3.29%–5.25% of the observed PV,
respectively.

QTL clusters
The QTL cluster was defined as a DNA region that har-
bored at least two QTLs for different traits (Jamshed
et al. 2016; Palanga et al. 2017; Said et al. 2013). In the
current study, when confidence intervals of QTLs for
different traits fully or partially overlapped, we defined
these QTLs to form a QTL cluster. Three QTL clusters

were formed from 7 out of 53 QTLs for PH and FBN,
and the marker intervals of these clusters were less than
20 cM on the genetic map (Said et al. 2013). They were
identified on three chromosomes, namely c01, c18, and
c21 (Additional file 3: Table S3). The cluster on c21,
clu-c21–1, harbored three QTLs, namely, qFBN-c21–
3(−), qPH-c21–1(−), and qFBN-c21–4(+), explained
4.64%–7.18% of the observed PV. The cluster on c01,
clu-c01–1, harbored two QTLs, namely, qPH-c01–1(+)
and qFBN-c01–1(+), explained 5.56%–6.82% of the

Fig. 1 The stable QTL for PH and FBN were distributed in chromosomes

Table 3 The stable QTLs for agronomic traits identified by the composite intervalmapping (CIM) in multiple environments
Trait QTL Environment Position /cM Marker Interval LOD Additive R2/% Physical interval /Mb Genes number Reported previously

PH qPH-c03–1 16ay 49.21 TM6645-TM6845 2.51 2.35 4.53 15.21–77.91 503 Said et al. 2013

13qz 50.71 2.65 1.49 4.98

qPH-c04–1 15ay 4.01 TM9846-TM9831 2.17 −1.67 3.97 60.53–60.81 26

16ay 4.01 2.26 −1.74 4.11

qPH-c04–3 13qz 32.91 TM9589-TM9576 3.4 2.13 6.84 52.11–54.03 46

13ay 36.31 2.79 1.75 5.43

qPH-c17–1 13ay 0.11 TM53503-TM53577 3.03 −1.99 5.82 2.47–3.73 88 Zhang et al. 2019a

14kel 4.61 2 −1.38 3.89

qPH-c19–1 15ay 17.21 DPL0022-CGR5590 3.74 1.85 7.17 3.87–5.71 218 Su et al. 2018

16ay 20.21 4.89 2.27 8.54

14kel 20.91 4.4 1.96 8.24

qPH-c25–1 14kel 6.81 TM58955-TM58998 3.09 1.44 5.77 1.27–1.70 44

16ay 7.51 3.79 2.02 7.11

FBN qFBN-c14–1 14kel 56.61 TM52927-TM52567 2.43 0.25 6.23 56–60.31 156

14ay 61.61 3.16 0.73 8.49

qFBN-c18–2 13qz 34.71 TM80422-TM80570 1.7 0.18 3.29 7.79–15.74 281

14ay 38.41 2.17 0.41 4.32

15ay 38.41 2.65 0.2 5.25
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observed PV. The cluster on c18, clu-c18–1, harbored
two QTLs, namely qFBN-c18–2(+) and qPH-c18–1(+),
explained 3.29%–6.64% of the observed PV. All of the
QTLs in clu-c18–1 showed positive additive effects, in
which FBN-c18–2 was a stable QTL identified across
three environments.

The gene annotation
In total, 925 and 437 genes in the physical interval of the
QTLs for PH and FBN were identified and annotated by
Gene Ontology (GO) and Kyoto Encyclopedia and Ge-
nomes (KEGG) analysis, respectively. In GO term ana-
lysis, the genes of both PH and FBN were mainly
assorted into three categories of cellular component,
molecular function, and biological process. The genes in
the cellular component were further enriched in subcat-
egories of cell part, cell, and organelle. The genes in mo-
lecular function were enriched in catalytic activity and
binding, and the genes in the biological process were
enriched in metabolic process, cellular process, and
single-organism process (Fig. 2). When the P-value <
0.05 was used to define the significance of functional en-
richment (Additional file 4: Table S4), for PH, a total of
106 genes were enriched in molecular function, in which
22 were found to act with sequence-specific DNA bind-
ing transcription factor activities and 11 to have
sequence-specific DNA binding functions. Thirteen
genes were enriched in cellular components, in which
three were found to function in the “proteasome com-
plex” and “proton-transporting ATP synthase complex
and catalytic core F(1)”. One hundred forty-five genes
were enriched in biological processes, in which 33 genes
were found to act in “regulation of transcription, DNA-
templated” processes and 10 genes in “lipid metabolic
processes”. For FBN, a total of 59 genes were enriched
in molecular function, in which 12 and 10 genes were
found to act in “nucleic acid binding” and “binding” ac-
tivities, respectively. Five genes were enriched in cellular
components, and 98 genes in biological processes (Add-
itional file 4: Table S4). KEGG pathway analysis revealed

that, when a significance level of P-value < 0.05 was used
to define the effectiveness of functional enrichment for
PH, most possible pathways were “Carbon metabolism”
(enriched 16 genes), “Oxidative phosphorylation”
(enriched 12 genes), “Glycerolipid metabolism” (enriched
7 genes), and “Glycerophospholipid metabolism”
(enriched 7 genes). For FBN, most possible pathways
were “Spliceosome” (enriched 6 genes), “Pentose and
glucuronate interconversions” (enriched 5 genes), and
“Glycerolipid metabolism” (enriched 4 genes) (Add-
itional file 5: Table S5).

Discussion
The significance of QTL mapping for agronomic traits
With the continuous reducing of total cotton planting
acreages due to the shortage of labor force and the in-
crease of labor cost in production, the full
mechanization of cotton production becomes inevitable
in the future development in China (Lu et al. 2018).
Mechanical managements in the whole growth proced-
ure of cotton in China have not been fully applied in
practical productions, probably due to the following rea-
sons. First, there are relatively few excellent cotton var-
ieties suitable for mechanization because mechanical
harvesting has certain strict requirements on plant archi-
tecture, such as at least a 20-cm node-height of the first
fruiting branch above the ground and a plant height of
100–120 cm (Gao et al. 2016). Second, cotton is planted
in small acreage of scales. The lack of large batches of
planting scales is mainly due to the planting of various
alternative crops, including corn and soybean, which
have advantages of high degree of mechanization, short
growth period, and easy management (Lei et al. 2014).
Third, to some extent, mechanical picking partially re-
duces fiber qualities. Studies indicated that mechanical
harvesting might result in a loss of 1–2 mm fiber length
and an increasing of impurity rate (Mao et al. 2016; Shi
and Zhou 2014). Therefore, it would be of great import-
ance to breed improved cotton varieties suitable for

Fig. 2 The GO classification of the genes for PH (a) and FBN (b) in stable QTL
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mechanized operations through molecular marker-
assisted selections for these important agronomic traits.

Comparison with previous QTLs
Plenty of genetic maps have been constructed, based on
which QTLs of target traits were identified in upland
cotton. Compared with QTLs identified for fiber quality
and yield traits, QTLs for agronomic traits are compara-
tively less reported (Li et al. 2014; Song and Zhang 2009;
Wang et al. 2006; Zhang et al. 2006). Therefore, it is ne-
cessary to map QTLs for agronomic traits using high-
density genetic maps. In the current study, QTL map-
ping for agronomic traits is based on a high-density gen-
etic map that covers a total genetic distance of 2 477.99
cM, composing 4 729 SNP markers and 122 SSR
markers. Comparing the results of this study with previ-
ous common QTLs summarized with meta-analysis
(Said et al. 2013), and QTLs identified in recent years
(Jia et al. 2016; Su et al. 2018; Zhang et al. 2019a; Zhang
et al. 2019b; Ma et al. 2019a), QTLs on c04 for PH and
those on c01, c07, c12, c20-c21, c24, and c26 for FBN
were all newly identified ones. As the existence of sig-
nificant G × E interactions, QTLs identified in every en-
vironment moved around. Windows QTL Cartographer
2.5 is unable to evaluate the G x E influences. In order
to increase QTL mapping accuracy, phenotypic data
across multiple environments were evaluated and used
to identify the QTL in our study. The stable QTLs that
could be detected across multiple environments were
probably more reliable, while the environment-specific
QTLs revealed the interaction between the G x E
influences.
QTL-wise comparisons were also conducted with the

physical position of the markers harbored in the QTL
confidence intervals. When a QTL for a correspondent
trait shared a fully or partially overlapped physical frag-
ment with a previously identified one, it was regarded as
a repetitive identification of a common QTL. We found
that 9 of the 27 QTLs for PH might be common ones
(Additional file 2: Table S2), of which qPH-c03–1, qPH-
c17–1, and qPH-c19–1 were stable in the current study.
The rest were probably newly discovered QTLs. Two of
the 26 QTLs for FBN may be common ones, while the
rest were probably newly discovered QTLs. In previous
studies, when SSR markers were applied to construct the
linkage maps, the QTLs in different studies were usually
compared through common markers in their confidence
intervals. When the SSR markers were aligned back to
the reference genome, their positions in the physical
map were very often not unique, possibly misleading the
mapping results. However, in current studies, when
SNPs were applied to map the QTL, although it was not
easy to compare common markers, it was convenient to
identify the physical position of the QTL. In recent

studies (Su et al. 2018; Zhang et al. 2019a), the physical
positions of stable QTLs for PH and FBN traits were
clearly shown. When comparing these studies with our
current study, the QTLs of qPH-c17–1 and qPH-c19–1
were probably previously identified by Zhang et al.
(2019a) and Su et al. (2018), respectively. This alternative
comparison of common QTL might provide a promising
choice of comparing the QTLs which were identified in
different studies.

Candidate gene functioning analysis
Some genes which may play an important role in the growth
and development of PH and FBN were identified by func-
tional annotation of homologous genes in Arabidopsis based
on GO and KEGG analysis and Arabidopsis annotation in-
formation (Additional file 5: Table S5). In stable QTLs of
the current study, 723 of 925 genes for PH and 335 of 437
genes for FBN had annotation information (Additional file 6:
Table S6). In previous studies, Gh_D03G0922 (MADS-box
family gene; AT5G60910) and Gh_D01G1471 (GhPIN3;
AT1G70940) were, respectively, annotated as AGAMOUS-
like 8 and Auxin efflux carrier family protein in Arabidopsis
and were verified to be responsible for PH in cotton (Su
et al. 2018; Ma et al. 2019a). OsPIN2 and ZmPIN1a, which
were also the PIN gene family members, were verified to
have an effect on PH of rice and maize (Chen et al. 2012; Li
et al. 2018b). However, in the current study, the gene in
qPH-c03–1, Gh_A03G0634 (AT5G60910), was also anno-
tated as AGAMOUS-like 8 in Arabidopsis, and Gh_
A03G1052 (AT1G23080), Gh_A03G1053 (AT1G70940),
Gh_A03G1054 (AT5G57090), and Gh_A03G1069
(AT1G71090) were annotated as Auxin efflux carrier family
proteins in Arabidopsis (Additional file 5: Table S5). An ex-
pression heat-map revealed that Gh_A03G1069 and Gh_
A04G1054 had a specific expression in stem in TM-1
(Zhang et al. 2015) (Fig. 3). Therefore, these genes could also
have a certain role in plant height determination in cotton.
Evidence indicated that gibberellin caused a reduction in
plant height (Monna et al. 2002; Sakamoto et al. 2004; Braun
et al. 2019; Annunziata. 2018). In this study, Gh_A03G0973
(AT4G21200) in qPH-c03–1 and Gh_D03G0239
(AT2G14900) in qPH-c17–1, were respectively annotated as
gibberellin 2-oxidase 8 and Gibberellin-regulated family pro-
tein genes, which could be involved in gibberellin biosyn-
thesis. Gh_A04G1054 (AT4G34710) in qPH-c04–1 was
annotated as an arginine decarboxylase 2 gene, which could
be involved in Polyamines biosynthesis (Watson et al. 1998).
Gh_D03G0284 (AT4G37760) in qPH-c17–1 was annotated
as a squalene epoxidase 3 (SQE3) gene, which may be in-
volved in sterol biosynthesis (Laranjeira et al. 2015). Gh_
D13G0612 (AT5G23190) and Gh_D13G0806 (AT2G23180)
in qFBN-c18–2 were annotated as cytochrome P450 genes,
which may be involved in brassinosteroid (BR) biosynthesis
(Wu et al. 2016). Gh_D13G0732 (AT1G68640) in qFBN-
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c18–2 was annotated as bZIP transcription factor family
protein, which may be involved in multiple biological pro-
cesses in plants (Hu et al. 2016; Lozano-Sotomayor et al.
2016; Yan et al. 2019). In general, these candidate genes for
PH and FBN could play an important role in cell elongation,
and tissue and organ differentiation and formation in plant
development, but their specific functions need to be further
verified. The results of this study will not only contribute to
promote an understanding of the genetic mechanism of PH
and FBN formation of cotton, but also enhance the practical
application for plant-type breeding through MAS.

Conclusions
In this study, QTLs for PH and FBN were detected,
based on the phenotypic evaluations of an intraspecific
RIL population of upland cotton across six environments

in three locations from 2013 to 2016 and the previously
reported (Liu et al. 2018) genetic linkage map of that
population. A total of 27 QTLs for PH and 26 QTLs for
FBN were identified, in which six for PH and two for
FBN were stable QTLs, and seven QTLs formed three
QTL clusters. The possible candidate genes behind the
QTLs were also identified and annotated. The results
could be of great importance to further understand the
genetic mechanism of plant type determination of cotton
and for pragmatic applications in future breeding pro-
grams for cultivar development to meet the challenges
of mechanization in cotton production.
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