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Abstract 

Background:  Nitrogen (N) is a required macronutrient for cotton growth and productivity. Excessive N fertilizers are 
applied in agriculture for crop yield maximization, which also generates environmental pollution. Improving crop N 
use efficiency (NUE) is the most economical and desirable way of reducing fertilizer application and environmental 
pollution. NUE has been an important issue in cotton. So far there is no report on cotton NUE improvement via trans-
genic approach. Nin-like proteins (NLP) are transcription factors regulating NUE. We previously demonstrated that 
AtNLP7 improved NUE and biomass when overexpressed in Arabidopsis. However, it is not known whether AtNLP7 can 
be used to improve NUE in crops.

Results:  To test the feasibility, we expressed AtNLP7 in cotton and evaluated NUE and yield of the transgenic cotton 
in the field. Transgenic cotton showed improved NUE and yield under both low and high N conditions. In addi-
tion, plant biomass, amount of absorbed N, N contents, activities of N-assimilating enzymes, and the expression of 
N-related marker genes were significantly increased in transgenic cotton compared with the wild type control, sug-
gesting that AtNLP7 enhances NUE in cotton.

Conclusion:  Together, our results demonstrate that AtNLP7 is a promising candidate to improve NUE and yield in 
cotton.

Keywords:  Nitrogen, Nitrogen metabolism, Nitrogen use efficiency (NUE), Nin-like protein (NLP), AtNLP7, Cotton 
(Gossypium hirsutum)
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Background
Cotton (Gossypium hirsutum L.) is a crucial fiber-pro-
ducing cash crop for textile industry (Ding et  al. 2020), 
livestock feed (Rogers et  al. 2002), industrial lubri-
cants (Durak and Karaosmanoglu 2004), and medicinal 

compounds (Egbuta et al. 2017). Global demand for cot-
ton in 2019 was recorded as 27.31 million tons (Mt) while 
total production achieved 26.40 Mt with average yield of 
0.78 tons per hectare (t·hm−2) (OECD/FAO 2020). In the 
next decade, cotton consumption of the world is antici-
pated to reach 29.17 Mt which will be met with the yield 
of 0.83 t·hm−2 until 2028 (OECD/FAO 2020). However, 
achieving the required productivity is limited by biologi-
cal and environmental factors. One of such factors affect-
ing cotton production is the availability and utilization of 
nitrogen (N).

N has significant impact upon cotton growth (Karlen 
et  al. 1996), yield (McConnell and Mozaffari 2005), and 
reproduction (Xue et  al. 2008). It is an integral compo-
nent of nucleic acids, proteins, coenzymes, chlorophyll, 
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metabolites and phytohormones. N is consistently 
required in larger quantity to achieve higher yield (Hou 
et  al. 2007). Previous studies have also associated high 
crop yield  and overall plant biomass with N accumula-
tion and assimilation (Basra and Malik 1984). Availability 
of N improves water use efficiency and salinity tolerance 
potential in irrigated cotton (Devkota et  al. 2013). The 
overall cotton seed-fiber biomass undergoes synchro-
nous and rapid elongation during seed development in 
the presence of N (Basra and Malik 1984). N deficiency 
leads to retarded cotton growth, senescence, and less boll 
production (Dong et  al. 2012). Therefore, N fertilizers 
are commonly applied to enhance cotton  productivity. 
However, excessive N causes delay in maturity as well as 
profuse vegetative development (Mng’omba et al. 2017). 
Plants cannot utilize all applied fertilizers. More than half 
of the applied N is lost into environment causing water 
and soil pollution (Zhang et al. 2018). Thus, an economi-
cal and optimal solution for reducing fertilizer input is to 
improve nitrogen use efficiency (NUE) of crops (Li et al. 
2017; Alfatih et al. 2020; Niu et al. 2021).

NUE, an important agronomic trait, is described as 
the net amount of grain or biomass yield of a crop per 
unit of  available N (Hawkesford 2014). Improving NUE 
by only 1% can significantly save about 1.1 billion dol-
lars annually (Kant et al. 2012). Plant NUE is a complex 
trait determined by the processes of N sensing, uptake, 
assimilation, and utilization (Fan et  al. 2017). First, soil 
nitrate is transported  to the plant on the cellular level 
through slow anion channel associated homologues 
(SLAH), chloride channel (CLC) and nitrate transporters 
(NRTs) (Krapp et al. 2014; Fan et al. 2017). The absorbed 
nitrate is then reduced to ammonium by nitrate reduc-
tase (NR) and nitrite reductase (NiR). Ammonium is 
further assimilated into amino acids by the action of 
glutamate synthase (GOGAT) and glutamine synthetase 
(GS) (Masclaux Daubresse et  al. 2010). A number of 
genes have been identified that could be manipulated for 
NUE improvement in plants, such as nitrate transporters, 
ammonium transporters, and key enzymes involved in N 
metabolism (Good et al. 2004) as well as transcriptional 
factors (Cai et  al. 2021; Sandhu et  al. 2021; Tiong et  al. 
2021).

Nodule inception (NIN) gene is required for nod-
ule-formation in legume plants (Schauser et  al. 1999). 
NIN encodes DNA-binding proteins with bZIP domain 
containing 60 amino acids highly conserved RWP-RK 
motif sequence (Borisov et  al. 2003). Nodule inception 
(NIN)-like proteins (NLPs) are plant specific transcrip-
tion factors (TFs) characterized by the presence of RWP-
RK domain and C-terminal PB1 domain (Konishi and 
Yanagisawa 2019). RWP-RK domain recognizes specific 
DNA element, PB1 domain serves in protein–protein 

interaction, while transcriptional activation is medi-
ated by N-terminal region (Ge et  al. 2018). NLPs bind 
to NRE (nitrate responsive cis element) in the promoter 
region and regulate the expression of N-related genes 
(Konishi and Yanagisawa 2013). Previous studies revealed 
that AtNLP7 plays a key role in N sensing and metabo-
lism (Castaings et  al. 2009). Overexpression of AtNLP7 
enhanced N assimilation and growth under N sufficient 
and limiting conditions in Arabidopsis (Yu et  al. 2016). 
Thus, it can be exploited as potential candidate for 
improving NUE in cotton.

It is a great challenge to improve crop NUE by conven-
tional breeding (Li et al. 2017; Niu et al. 2021). However, 
transgenic technology offers an efficient and effective 
alternative of improving NUE. For instance, rice NUE can 
be greatly improved by overexpressing OsNLPs (Alfatih 
et al. 2020; Wu et al. 2020). However, there is no report 
on cotton NUE improvement by transgenic approach. 
In this study, we developed transgenic cotton lines over-
expressing AtNLP7 and tested the growth and NUE in 
laboratory as well as in the field. Our results showed that 
overexpression of AtNLP7 upregulated the expression 
of marker genes involved in  N uptake and assimilation, 
improved N uptake and overall NUE in cotton as well as 
cotton yield in the field, suggesting  that the function of 
AtNLP7 is well conserved in higher plants. Thus AtNLP7 
is a promising candidate for improving cotton NUE.

Results
AtNLP7 significantly improved the growth of cotton 
seedling
To evaluate the role of AtNLP7 in improving NUE of cot-
ton, we generated transgenic cotton lines overexpress-
ing (OE) AtNLP7, and three homozygous transgenic lines 
(OE1, OE2 and OE3) were chosen for the study by con-
firming their AtNLP7 expression (Additional file  1: Fig. 
S1). Transgenic lines and the wild type (CK) were grown 
in modified Kimura B solution with different concen-
trations of nitrate as the  sole N source. All three trans-
genic lines showed significant improvement in growth as 
compared with the control (CK) in all tested N concen-
trations (Fig. 1A). The control plants (CK) did not show 
significant difference on root and shoot fresh weight 
under 0.2  mmol·L−1  and 2.0  mmol·L−1 N  conditions in 
this developmental stage. Nevertheless, the OE lines 
exhibited significantly increased shoot and root weight, 
and root length under both low N and N rich conditions 
compared with CK (Fig. 1B). Furthermore, we compared 
the growth parameters of OE lines with CK cotton plants 
grown in soil. OE lines displayed increased plant height 
(Fig.  2A, C), leaf biomass (Fig.  2B, D), and chlorophyll 
contents (Fig. 2E, F) as compared with the CK.
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B

Fig. 1  AtNLP7 improved the growth of cotton seedling in hydroponic culture with different N levels. A Seedling of CK and transgenic cotton grown 
under different N levels. A representative seedling is shown for each line. Bar = 4 cm. B Biomass of root and shoot. Results are average values ± SD 
(n = 3 replicates, 16 plants per replicate). Letters denote significant differences (P < 0.05) from Duncan’s multiple range tests

CK                 OE1               OE2
A

B

C

D F

E

Fig. 2  Phenotype of soil-grown AtNLP7 transgenic cotton. A Growth phenotype of three-weeks-old seedlings of CK and transgenic cotton grown 
in soil. A representative pot is shown for each line. Bar = 4 cm. B Leaf comparison of three-week-old CK and transgenic cotton. A representative leaf 
is shown for each line. Bar = 4 cm. (C–F) Growth related parameters including plant height (C), leaf fresh weight (D), chlorophyll a content (E), and 
chlorophyll b content (F) in CK and transgenic cotton. Results are average values ± SD (n = 3 replicates, 16 samples per replicate). Letters denote 
significant differences (P < 0.05) from Duncan’s multiple range tests
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AtNLP7 improved cotton yield and NUE in field
To evaluate the performance of OE lines in field, we con-
ducted field trials for the OE lines and the  wild type in 
the field conditions with application of 75, 150, 300, and 
375  kg·hm−2  N fertilizer as described in Methods  and 
materials. Under 75, 150, 300, and 375  kg·hm−2 con-
centrations, the yield of  OE lines  per plot increased by 
14%, 25%, 19%, and 9.6%, respectively, over the control 
(Fig.  3A). Furthermore, the OE lines exhibited higher 
NUE under 150  kg·hm−2  N concentration with 22% 
increase over the control. Likewise, 14% higher NUE was 
observed in OE when supplied with 75  kg·hm−2  N fer-
tilizer while the NUE in OE was 15% higher when pro-
vided with 300  kg·hm−2  N fertilizer (Fig.  3B). However, 
no significant difference in NUE between transgenic 
lines and control was observed under 375  kg·hm−2  N 
concentration.

AtNLP7 enhanced N uptake in cotton
To investigate nitrate uptake of  OE lines, we first con-
ducted chlorate sensitivity assay. Chlorate is a toxic 
analogue of KNO3 and transported by the same nitrate 
transporters. Results in Fig.  4 showed that all OE and 
CK cotton plants grew well under 0  mmol·L−1 chlo-
rate condition. However, under 2.0  mmol·L−1 chlorate 
conditions, the OE lines displayed  phenotype of higher 
sensitivity to chlorate than CK as indicated by their 
survival  rates (Fig. 4A, B), indicating that OE lines have 
higher N uptake ability. Second, we directly evaluated the 
nitrate acquisition ability of CK and OE plants by feed-
ing K15NO3. And OE lines showed significantly higher 
uptake of K15NO3 (Fig. 4C), consistent with the chlorate 
assay results.

AtNLLP7 improve N assimilation in cotton
Total N content, C content, and metabolite marker 
glutamate, nitrate reduction and assimilation  related 

enzyme activities were measured and compared between 
transgenic and CK cotton under both high and low N 
concentrations. Increasing the provided nitrate concen-
tration caused increment in N contents in both CK and 
OE cotton  lines. Furthermore, N content was higher in 
OE lines as compared with CK under both high and low 
N concentrations (Fig. 5A). The C content was also found 
slightly higher in OE line than in CK under both low and 
normal concentrations of KNO3. Total C content in both 
OE and CK increased with the increasing KNO3 concen-
tration from 0.02 to 2.0 mmol·L−1 (Fig. 5B).

The nitrate contents  in all cotton lines increased with 
increasing supply of KNO3 from 0.02 to 2.0  mmol·L−1. 
However, nitrate contents in OE  lines were found lower 
than those in CK under both low and high N concentra-
tions (Fig.  5C), indicating that KNO3 was more quickly 
assimilated in transgenic plants. Glutamate content was 
increased in OE lines under both high and low con-
centrations  of N despite the increasing activity of glu-
tamine synthetase (Fig.  5D, H). This is probably due to 
fast production of glutamate compared with the amount 
of glutamine synthetase. The activities of enzymes in N 
assimilation, including nitrate reductase, nitrite reduc-
tase and glutamine synthetase were significantly higher 
in OE lines than in CK under both low and high N levels 
(Fig. 5F–H).

AtNLP7 upregulated the expression of marker genes in N 
transport and assimilation
The function of AtNLP7 is well conserved in cotton, 
which is supported by the nitrate responsive cis elements 
(NRE) in the promoter region (2 kb) of the marker genes 
(Additional file  1: Table  S1). To confirm if orthologous 
genes of AtNLP7 have evolved in cotton from common 
ancestor, we performed a BLAST using AtNLP7 protein 
sequence against cotton genome and found there are at 
least seven AtNLP7 orthologs in cotton (Additional file 1: 

Fig. 3  AtNLP7 improved cotton yield and NUE in the field. Actual yield (A) and NUE (B) of transgenic cotton obtained under 75, 150, 300, and 375 
kg·hm−2 supply of nitrogen. Results are average values ± SD (n = 3 replicates, 27 plants per replicate). Letters denote significant differences (P < 0.05) 
from Duncan’s multiple range tests
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Table  S2). To confirm whether AtNLP7 in transgenic 
cotton regulates the same suit of genes as in Arabidop-
sis, we analyzed the expression levels of marker genes in 
nitrate transport, reduction and assimilation, including 
GhNRT1.1, GhNRT1.2, GhNRT2.1, GhNRT2.2, GhNIA1, 
GhAMT1, GhAMT2, and GhGS1.1, and found all the 
marker genes were significantly up-regulated in OE lines 
compared with the wild type, consistent with the pheno-
type of OE plants (Fig. 6).

Discussion
NUE improvement has been a major issue in cotton. A lot 
of work has been done to improve cotton NUE, mainly 
focusing on cultivation strategies (Du et al. 2016; Li et al. 
2017; Zhang et al. 2018) and recently shift towards NUE 
evaluation of cotton cultivars andits application in breed-
ing programs (Raun and Johnson 1999; Zhang et al. 2018; 
Iqbal et  al. 2020). However, these strategies achieved 
limited success because they are laborious, costly and 

time-consuming. Transgenic approach is specially desir-
able to improve agronomic traits and has achieved tre-
mendous success in cotton for example the Bt cotton for 
insect resistance (Zafar et al. 2020). Therefore, the identi-
fication and genetic manipulation of key NUE-enhancing 
genes become critical for improving cotton NUE.

In this study, we evaluated the Arabidopsis NLP7 in 
cotton NUE improvement. The AtNLP7 overexpression 
lines exhibited a significantly improved seedling growth 
under all N levels with increased seedling biomass, 
larger leaf and root system (Figs. 1, 2), which greatly ben-
efit seedling establishment. The field trial also showed 
that the AtNLP7 overexpression significantly improved 
both cotton NUE and yield (Fig.  3). We further showed 
that AtNLP7 overexpression upregulated the expression 
of genes related to  N uptake and assimilation in cotton 
(Fig.  6), result in  increasing N uptake and assimilation 
(Figs.  4, 5), and ultimately improving cotton NUE and 
yield.

2 mmol·L-1 KClO3

CK         OE1          OE2      OE3CK         OE1     OE2     OE3

0 mmol·L-1 KClO3

B C

A

Fig. 4  AtNLP7 enhancef N uptake in cotton. A Chlorate sensitivity. A representative plant is shown after chlorate treatment. Bar = 4 cm. B Survival 
% after chlorate treatment as in (A). Results are average values ± SD (n = 3 replicates, 16 plants per replicate). Letters denote significant differences 
(P < 0.05) from Duncan’s multiple range tests. C Accumulation of 15N isotope in 2-weeks-old seedlings. Results are average values ± SD (n = 3 
replicates, 16 plants per replicate). Letters denote significant differences (P < 0.05) from Duncan’s multiple range tests
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According to studies reported earlier, there are  in 
total of 60, 61, and 105 NLP genes in G. arboreum, G. 
raimondii, and G. hirsutum, respectively (Magwanga 
et al. 2019). We performed BLAST (as shown in Addi-
tional file 1: Table S2) which showed that 7 orthologs of 
AtNLP7 are found in cotton and these 7 genes include 
GhNLP2, 4, 5, 6, 7, 8, and GhNLP9 (Additional file  1: 
Table S2). Moreover, the NREs in the promoter regions 

(2 kb) of these cotton genes (Additional file 1: Table S1) 
are similar to those found in Arabidopsis which suggest 
that AtNLP7 could directly activate the expression of 
cotton genes by binding to NRE.

Other regulatory genes have been identified to improve 
NUE such as SNF1-related kinase (SnRK) in tomato 
(Wang et al. 2012), bHLH transcription factor in soybean 
(Chiasson et al. 2014), NAC transcription factor in wheat 

Fig. 5  AtNLP7 improved N assimilation in cotton. A and B Content of nitrogen (A) and carbon (B). Results are average values ± SD (n = 3 replicates). 
Letters denote significant differences (P < 0.05) from Duncan’s multiple range tests. C–E Content of nitrate (C), glutamate (D), and glutamine (E). 
Results are average values ± SD (n = 3 replicates). Letters denote significant differences (P < 0.05) from Duncan’s multiple range tests. F–H Enzyme 
activity of nitrate reductase (F), nitrite reductase (G), and glutamate synthase (H), in transgenic cotton compared with CK. Results are average 
values ± SD (n = 3 replicates). Letters denote significant differences (P < 0.05) from Duncan’s multiple range tests

Fig. 6  AtNLP7 upregulated N-related genes. Two-weeks-old cotton plants grown on medium containing 2 mmol·L−1 KNO3 were used for RT-PCR 
analysis of GhNRT1.1 (A), GhNRT1.2 (B), GhNRT2.1 (C), GhNRT2.2 (D), GhNIA1 (E), GhAMT1 (F), GhAMT2 (G), GhGS1 (H). GhHis3 was used as internal 
control. Results are average values ± SD (n = 3 replicates). Letters denote significant differences (P < 0.05) from Duncan’s multiple range tests
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(Uauy et al. 2006) as well as OsNLPs in rice (Alfatih et al. 
2020; Wu et  al. 2020). These genes are candidates for 
genetically improving cotton NUE as well.

Assimilation of N and C are tightly co-regulated 
processes which indicate that NUE, along with N 
assimilation, also admits C metabolism (Chardon 
et al. 2012). Thus, it is agreeable that optimizing plant 
growth, development, and yield involves simultaneous 
improvements in both N and C utilization efficiencies. 
We found similar coordination among C and N assimi-
lations indicated by higher accumulation of C and N in 
AtNLP7 overexpressing cotton. Expression of AtNLP7 
in cotton showed higher chlorophyll contents which 
may pose direct impact upon C-fixation (Yu et  al. 
2016). A well-balanced N/C is significantly helpful in 
improving NUE.

The AtNLP7-enhanced NUE in cotton was sup-
ported by the data of total N content, C content, and 
two metabolite markers (glutamate and glutamine) 
for N assimilation and utilization (Fig. 5). Higher N as 
well as C content were found in transgenic cotton as 
compared with CK. The nitrate contents were lower 
in OE plants than in CK, however, total nitrate con-
tents increased with increasing supply of KNO3 from 
0.02 to 2.0 mmol·L−1 (Fig. 5C). These results indicated 
that more N was absorbed in OE cotton than CK, and 
more KNO3 was assimilated in OE plants thus reducing 
their net content. The glutamate (Glu) content was also 
found lower in CK. The net Glu contents of both con-
trol and transgenic lines were found higher at higher 
concentration of KNO3 (Fig.  5D). Meanwhile, glu-
tamine (Gln) contents increased significantly in trans-
genic cotton than in CK while net Gln content were 
higher on high N supply than lower N concentration 
(Fig.  5E). These results suggested that the assimilation 
of N in NLP7 OE line was increased compare with CK. 
(Fig. 5F–H).

The metabolic data are consistent with and supported 
by the expression analysis of N metabolism marker 
genes including GhNRT1.1, GhNRT1.2, GhNRT2.1, 
GhNRT2.2, GhNIA1, GhAMT1, GhAMT2, and 
GhGST1.1, which were up-regulated in OE lines com-
pared with CK (Fig.  6). Taken together, these results 
suggest that the function of AtNLP7 is well conserved 
in cotton.

Conclusions
In conclusion, we have demonstrated that the function 
of Arabidopsis NLP7 is well conserved in cotton. Overex-
pressing AtNLP7 up-regulates N uptake and assimilation, 
and improves yield and NUE in cotton. Therefore NLP7 

is a promising candidate gene for cotton NUE and yield 
improvement.

Methods and materials
Plant transformation
Full length cDNA of AtNLP7 was cloned in the binary-
vector (pCB2004) containing CaMV 35S promoter, and 
Agrobacterium-mediated cotton transformation  was 
adopted as described by  Lei et  al. (2007).  R15 cultivar 
of upland cotton (Gossypium hirsutum) was used as the 
recipient. The plantlets were generated and transferred 
to pots for further growth. Subsequently, the primary 
shoots of transformed T0 plants were grafted into mature 
cotton plants of the  wild type to get T1 seeds as previ-
ously described in Arabidopsis (Yu et al. 2016).

Plant growth conditions
Seeds were disseminated for 4  days in soil and then 
transferred into Kimura B solution for hydroponic cul-
ture and replaced with fresh medium on alternate days 
(Ehara et  al. 1990). According to N requirements by 
plants and studies reported earlier (Shah et  al. 2017; 
Alfatih et  al. 2020), three levels of N concentrations 
were selected to treat CK and transgenic cotton lines to 
study their growth rates (normal = 2  mmol·L−1 KNO3, 
medium = 0.2  mmol·L−1 KNO3, Low = 0.02  mmol·L−1 
KNO3) at 28  °C, with photoperiod of 8 h dark and 16 h 
light, relative humidity 70%, and 250 µmol·m−2·s−1 light 
intensity. For analyzing soil-grown phenotype, plants 
were grown in soil (Pindstrup organic mixes, Pindstrup-
Mosebrug A/S, Fabriksvej 2, 8550 Ryomgaard, Denmark) 
with similar photoperiod time and temperature as for the 
hydroponic growth condition.

RNA isolation and qRT‑PCR
Total RNA was isolated using Eastep Super Total RNA 
Extraction Kit (Promega Biotech Co. Ltd. Beijing). Iso-
lated RNA (1  μg) from each sample was subjected to 
reverse transcription reaction. For expression analysis 
of AtNLP7, gene specific primers were used with cDNA 
template for qRT-PCR. Cotton GhHis3 (AF024716) 
was used as internal control and quantitative RT-PCR 
was carried out according to reported protocol (Alfatih 
et  al. 2020). Expression levels of GhNRT1.1,  GhNRT1.2
,  GhNRT2.1,  GhNRT2.2 (nitrate transporters), GhNIA1 
(nitrite transporter1), GhAMT1,  GhAMT2 (ammonium 
transporters), and GhGS1 (glutamine synthetase1) were 
checked by using gene specific primers listed in Addi-
tional file 1: Table S3.

Determination of chlorophyll, nitrate, and carbon contents
Samples (200  mg) from 4  weeks old plant leaves were 
taken from control and transgenic cotton plants grown 
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in soil for determination of chlorophyll contents. Samples 
were frozen in liquid nitrogen and then kept in 5 mL of 
absolute ethanol (99.9%) followed by heating for 20 min 
at 80  °C in water bath. Total amount of chlorophyll was 
checked from absorbance reading by using appropriate 
extinction coefficient in alcohol extracts. Total chloro-
phyll (mg·g−1 fresh weight) content was quantified using 
protocol reported earlier (Choe and Thimann 1975). Cel-
lular nitrates were isolated in 50 mmol·L−1 HEPES–KOH 
(pH 7.4) and quantified using established protocol (Cat-
aldo et  al. 1975). Oven-dried plant materials were pro-
cessed in CHNS analyzer (Vario EL III model, Hanau, 
Elementar, Germany) using the manufacturer’s guideline 
for quantification of total C and N content.

Metabolite and enzyme activity assays
The metabolites and enzyme activities analyses were per-
formed in cotton seedlings treated hydroponically for 
16 days with different dilutions of N (0.02 mmol·L−1 and 
2 mmol·L−1 KNO3). To identify the total of N and C con-
tent, plants were dried in oven and measured using an 
CHNS analyzer (Vario EL III model, Elementar, Hanau, 
Germany) according to the manufacturer’s instructions. 
Nitrate content was measured using assay kits (Su Zhou 
Keming Bioengineering Company, China), following 
the manufacturer’s instructions. Glutamate content was 
measured using assay kits (Nanjing Jiancheng Bioengi-
neering Institute and affandi-e.com, Shanghai respec-
tively). The maximal NR in  vitro activity was checked 
using the  reported protocol (Ferrario-Mery et  al. 1998), 
while enzymes activities  of NR, NiR, and GS were 
checked using enzyme-coupled spectrophotometer assay 
kit (Su Zhou Keming Bioengineering Company, China) 
according to manufacturer’s guidelines (Cai et al. 2009).

Chlorate sensitivity assay
Seedlings, initially grown in Kimura B solution 
(2  mmol·L−1 KNO3) for 4  days, were then treated for 
6  days with 2.0  mmol·L−1 chlorate. Treated seedlings 
were subsequently recovered for two days in Kimura B 
solution with 2.0 mmol·L−1 KNO3. The chlorate treated 
plants that died after recovery in Kimura B solution were 
counted  as dead. Survival rate  (%) is calculated as (total 
treated plants – dead plants)/total treated plants*100.

Determination of N uptake using 15N‑nitrate
N uptake by cotton seedlings using  15N-labeled KNO3 
(Sigma-Aldrich, No. 335134, 99% 15N) was performed as 
previously described (Lin et  al. 2008). Briefly, seedlings 
grown in Kimura B solution for 10 days were shifted to 
0.1  mmol·L−1 CaSO4 for one minute followed by incu-
bation for 30 min in modified MS (5 mmol·L−1 K15NO3 
of 99% 15N as  the only N source) nutrient solution, and 

finally kept for one minute in 0.1  mmol·L−1 CaSO4. 
Seedlings were oven-dried at 70 °C to a constant weight 
and then grinded. Total 15N content was measured 
through continuous flow isotope ratio mass spectrometer 
(Thermo-MAT253) conjugated with elemental analyzer 
(Flash2000 HT, Thermo Fisher Scientific, Inc., USA).

Field test of cotton
Field trials for the evaluation of transgenic AtNLP7 cot-
ton performance (yield and NUE) under different N con-
centrations were conducted at the Experimental Station 
of Shanxi Academy of Agricultural Sciences, Yuncheng, 
Shanxi Province, China from April to September 2021. 
Three plots or replicates for each variety were set, and 
75, 150, 300, and 375 kg·hm−2 urea fertilizer in addition 
of 375  kg·hm−2 of superphosphate was added to each 
treatment,  respectively. Cotton plants were grown with 
a density of 27 plants per row, and 4 rows per plot. Plot 
dimensions were maintained with row length of 7.41  m 
and 0.675 m row spacing. Total test area  is 240 m2 with 
52 500 plants·hm−2 density and average plant spacing of 
0.274 m. Border plants were excluded to avoid marginal 
effects, and the variation in field trials were reduced by 
applying fertilizers evenly in each plot. The cotton fiber 
yield was calculated by weighing the harvested  cotton 
while the NUE was calculated using the following for-
mula: NUE = cotton yield /amount of applied N fertilizer.

Accession numbers
Sequence data from this article can be found in the 
Arabidopsis TAIR database (https://​www.​arabi​dop-
sis.​org/) or The National Center for Biotechnol-
ogy Information (www.​ncbi.​nlm.​nih.​gov/) under the 
following accession numbers: AtNLP7: AT4G24020, 
GhHIS3: LOC107951735, GhNRT1.1: LOC107920453, 
GhNRT1.2: LOC107918724, GhNRT2.1: LOC107942169, 
GhNRT2.2: LOC107958556, GhNIA1: LOC107910262, 
GhGS1: LOC107928854, GhAMT1:LOC107892566, and 
GhAMT2: LOC107938932.
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