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Abstract 

Australian cotton production predominantly occurs on Vertisols. The average lint yield of cotton grown in Australia is 
2 260–2 700 kg·hm−2, which is 2.5 to 3 times the world average. This high productivity per unit of land area requires 
efficient use of resources such as water and nutrients. However, high yields accelerate the export of nutrients such as 
phosphorus (P) in seed, depleting the soil reserves of P more than in other countries with lower cotton yields. Recent 
surveys of cotton industry indicate that P application rates should match seed P export (30~ 40 kg·hm−2), but histori-
cal depletion within subsoil is still evident and is continuing. Depletion of soil P is typically more pronounced in the 
subsoil than in the topsoil (0~ 20 cm) where P fertiliser is applied, as cotton roots rely on these layers as important 
sources of plant available water and available P. This mismatch between zones of P uptake and resupply may increase 
stratification of available P in the soil profile. Recent studies showed that cotton responded poorly to banded applica-
tions of fertiliser P, while dispersal of fertiliser throughout the plant beds was more successful. Researchers have also 
observed sporadic cotton responses to applied P fertiliser in soils where available P concentrations were well above 
the previously determined critical concentrations indicative of fertiliser P responses in Australia. To sustain high-
yielding cotton production in Australia, a greater understanding of cotton root acquisition of applied P, as well as a 
re-examination of critical soil P concentrations for each production region are required.
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Introduction
The majority of Australian cotton is grown on Vertisols 
(cracking clay soils), with the high crop productivity pri-
marily as a result of the high-water holding capacity and 
inherently fertile nature of these soils. Recent investiga-
tions have suggested that there is a decline in phospho-
rus (P) fertility of these Vertisols with years of cotton or 
grain production, with this decline most evident below 
the cultivated/topsoil layers due to the relative immo-
bility of this nutrient in these soil types (Bell et al. 2020; 
Schwenke et al. 2021). In addition, Constable and Bange 

(2015) theorised that to realise the full yield potential 
of modern cotton cultivars (5  000  kg·hm−2), the crop P 
uptake will need to increase from the current P uptake of 
30~ 40 kg·hm−2, up to 85 kg·hm−2. This represents major 
challenges for the plant physiological processes of yield 
establishment as well as for resource capture by the crop 
root system to meet growth demands. The physiologi-
cal limitations to achieving these potential yields will be 
greatly exacerbated by the decline in native soil P reserves 
if it is accompanied by an increasingly stratified distribu-
tion of P (Schwenke et al. 2021) in thinner and shallower 
proportions of the rooting zone in response to common 
fertiliser application practices. To overcome this limita-
tion, it is essential to improve the understanding of soil P 
availability and cotton response to applied P fertiliser. In 
view of this, this short paper reviews the previous studies 
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on P nutrition in Australian cotton over the past 30 years. 
The majority of this review focuses on irrigated cotton 
farming systems, however recent research on dryland 
cotton systems was also included in the discussion.

Background
Cotton growing regions of Australia
In Australia, cotton production is predominantly con-
centrated in two eastern states, New South Wales (NSW) 
and Queensland  (QLD). The main cotton producing 
regions include the central highlands (including Daw-
son and Callide valleys, Darling Downs, St George, 
Dirrabandi and Mungindi valley in Queensland; and the 
Macintyre, Gwydir, Upper Namoi, Lower Namoi, Mac-
quarie Valleys, Bourke, Tandou, Lachlan and Murrum-
bidgee/Murray valleys in NSW (Fig.  1). The emerging 
regions include Kununurra in Western Australia, Kath-
erine in Northern Territory and Georgetown in northern 
Queensland (Fig. 1).

Results and discussion
P use by cotton growers over the past 10 years
The average rate of fertiliser P applied by commercial 
cotton growers increased from 23  kg·hm−2 in 2000–
2001 to 44.2  kg·hm−2 in 2019–2020 season (CRDC 
2020). Average lint yields in cotton industry  have been 
relatively stable over the last 10  years, fluctuating from 
2 270 to 2 724 kg·hm−2 (The common term used by cot-
ton industry to quantify the lint is bales. In Australia, 1 
bale = 227  kg of ginned lint). Based on the estimates of 
Rochester (2007), the average seed P export for this yield 
of cotton would have been 23∼27  kg·hm−2, which has 
generally been matched or exceeded by P fertiliser addi-
tion rates over the past 10 years (Fig. 2). Data of P ferti-
liser use was not collected in the survey in some years, 
but the cotton consultant survey (2014–2015) revealed 
grower clients used a maximum of 30∼40 kg·hm−2, with 
only very few clients (representing < 4 000 ha. of produc-
tion) using more than 40 kg·hm−2. The 2018–2019 season 
was extremely dry, with no or very low allocation of water 
for irrigation, leading to one of the smallest areas planted 
with cotton in Australia in recent decades. Therefore, the 
70  kg·hm−2 application rate in 2018–2019 was likely an 
outlier in P fertiliser use statistics of the Australian cot-
ton industry (Fig. 2).

A review of P response studies and critical available P 
concentrations for Australian cotton soils
The inherently high fertility of cotton growing Vertisols 
has meant that there has not been much attention paid 
to fertiliser P response until the 1990s, when Hibberd 
et al. (1990) reported a response to applied P in central 
Queensland on a shallow basaltic dark cracking clay. 

Cotton P fertiliser response experiments were conducted 
from 1992 to 2006 in the Macquarie Valley (Central West 
NSW) where the native soil P fertility is inherently lower 
(Schwenke et  al. 2021) and the soils tested belonged to 
the Vertosol and Dermosol Australian Soil Classifica-
tion (ASC) orders (Isbell and National Committee on 
Soil and Terrain 2021). Results of these trials suggested 
a consistent yield benefit with P application (Hulme 
2015), and the  available P in 0∼30  cm of the soil could 
be depleted by just two high-yielding cotton crops. These 
experiments were conducted prior to the current indus-
try recommendation to disperse the P fertiliser within 
the soil when applying fertilisers to improve plant P 
uptake. The P application in these experiments was done 
via buried-band applications, which have shown to be a 
relatively ineffective application strategy to ensure cot-
ton P uptake in recent studies (Bell 2014; Griffith and 
Guppy 2016). Therefore, the average yield increase from 
P application in the Hulme (2015) studies, which ranged 
from 1.4%∼7% in 7 out of 8  years over 66 experiments 
conducted between 1992 and 2006, may be somewhat 
conservative. In those Macquarie Valley soils with inher-
ently low P fertility, trial results indicated that a lint yield 
response could be expected when the soil Colwell P test 
(Colwell 1963) concentrations was less than 10 mg·kg−1. 
The probability of yield improvement declined when 
Colwell P was between 10∼20  mg·kg−1 and there was 
little yield response when Colwell P was greater than 
20 mg·kg−1 (Fig. 3). Regionally, higher lint yield responses 
to applied P were observed in older alluvial Vertisols 
deposited more than 15 000 years ago, compared to those 
deposited more recently, i.e. less than 5 000 years ago.

Dorahy et al. (2004) conducted 17 fertiliser-P response 
field experiments (1997–2000) across four Australian 
cotton growing regions: upper and lower Namoi (5), 
Macquarie (2), Gwydir (7) and MacIntyre (3). They con-
cluded that the critical soil Colwell P concentration in 
the cultivated layer (0∼30 cm) for cotton yield response 
was 6  mg·kg−1, somewhat lower than the 10  mg·kg−1 
found by Hulme (2015) in the Macquarie Valley studies. 
Where the Colwell P was less than 6  mg·kg−1, Dorahy 
et al. (2004) recommended the application of 40 kg·hm−2 
P fertiliser to build up soil P reserves. Where the Colwell 
P was between 6 and 12  mg·kg−1 they recommended 
20 kg·hm−2 P to maintain soil P fertility. However, these 
studies also relied heavily on subsurface banded appli-
cations (narrow ~ 2  cm wide bands), with P banded 
below or to the side of the planting line in 15 of the 17 
on-farm trials and only dispersed through the plant bed 
in 2 trials. Another investigation in Western Australia 
(Kununurra) on a Chromic Vertisol (with Colwell P levels 
of 14 mg·kg−1 at 0∼30 cm depth) reported a cotton yield 
response to P applied in dual bands at 10∼15  cm and 
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Fig. 1  Australian cotton growing regions and emerging areas ( Source: Cotton Australia 2021)
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25∼30 cm depths (Singh et al. 2005), while Duggan et al. 
(2007) suggested cotton plants required P applications of 
60 kg·hm−2 and 80 kg·hm−2 over one or two seasons in 
the Ord River region of Western Australia.

Given the more recent understanding of the impor-
tance of soil P reserves in deeper profile layers (Bell et al. 
2012), and the possible role of other soil P pools that can 
buffer the more readily available Colwell P (Wang et  al. 
2007), it is unfortunate that deeper and more intensive 
soil analyses were not undertaken for these extensive 
study sites. However, after  accepting those limitations 
these studies suggest that either (i) cotton is very effi-
cient at extracting P from soil with low available P con-
centrations, possibly due to the strong mycorrhizal 
associations formed in cotton root systems (Bell et  al. 
2006; Eskandari et al. 2017a, 2017b), and/or (ii) cotton is 

relatively ineffective at responding to patches of elevated 
P availability such as when high rates of P are applied 
in bands or cultivated soil layers, possibly due to poor 
root proliferation responses. A glasshouse investigation 
by McLaren et  al. (2013) provided possible examples of 
both characteristics. In that study, unfertilised cotton 
plants were able to accumulate approximately twice the 
amount of P as faba bean plants growing for the same 
growth duration in the same low P soils (Colwell P of 
2.0∼8.0 mg·kg−1). However, when P fertiliser was applied 
in a variety of ways (dispersed through the soil volume, 
banded or mixed through defined soil layers), faba beans 
responded by at least doubling plant P uptake (particu-
larly where P was concentrated in bands or enriched in 
certain  soil layers), while cotton increased P uptake by 
only 30%–40% with no apparent preference for any appli-
cation strategy. This limited response to applied P ferti-
liser was also reported in a subsequent investigation by 
Bell (2014), which was unable to derive a critical Colwell 
P concentration due to inconsistent responses to applied 
P fertiliser in field studies in southern Queensland. They 
concluded that the uptake of P from concentrated bands 
by cotton roots was inefficient/poor and that dispersing P 
fertiliser through the plant beds was likely to provide the 
best opportunity for plants to acquire P. The dispersion 
of P fertiliser throughout the cotton beds requires thor-
ough mixing to provide maximum opportunity for cotton 
roots to acquire P, with observations from field studies 
suggesting that broadcasting and then incorporating P 
using tillage during bed formation did not provide well 
dispersed P through the bed/hill (Bell 2014). This sug-
gests that effective dispersal of applied P fertiliser will 
require intensive tillage operations, which conflicts with 
best practice for sustainable cotton cropping systems that 
aim for minimum tillage and permanent beds (Hulugalle 
et  al. 2020). Soil biological health benefits such as myc-
orrhizal networks in reduced tillage systems are aspects 
of soil health that will impact crop P acquisition. Mycor-
rhizal colonisations are reported to be initiated in surface 
soil and colonise the roots downwards (Nehl et al. 1999), 
but the influence of cropping systems or tillage on myc-
orrhizal colonisation in cotton has not been reported yet 
(Hulugalle et al. 2004).

An investigation by Bell (2014) and Griffith and Guppy 
(2016) on a long-term rainfed experiment managed 
by Incitec Pivot Fertilisers Ltd suggested that the criti-
cal Colwell P concentrations for P response could be 
as high as 25.0  mg·kg−1—significantly higher than the 
6.0  mg·kg−1 of P previously reported by Dorahy et  al. 
(2004). This experimental site was characterised by a 
wide range of Colwell P concentrations in the top 10 cm 
of the soil profile (6.0 to 64.3 mg·kg−1), with subsoil Col-
well P typically < 5.0  mg·kg−1 in all fertiliser histories 

Fig. 2  Average lint yield (Cotton Year Book, 2011 to 2020), P fertiliser 
use (CRDC-Annual cotton grower surveys, 2011–2012 to 2019–2020) 
and seed P export estimates

Fig. 3  Cotton lint yield response to fertiliser P as a function of soil 
Colwell P ( adapted from Hulme (2015))
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(annual applications of 0, 10 and 20 kg·hm−2 of P). The 
cotton crop had limited access to the P-enriched topsoil 
layer (few surface roots and occasional drying of topsoil 
layers between rain events), which may have contributed 
to the higher critical Colwell P value derived in this study. 
Interestingly, despite the strong yield response to increas-
ing available P, the cotton crop was not able to respond to 
P fertiliser bands applied in the low-P subsoils (i.e. bands 
at 20  cm depth), even when the crops were otherwise 
under severe P deficiency. The authors suggested that 
the long-term enrichment of soil with regular P fertiliser 
additions would likely provide the most stable P supply to 
the plant, rather than attempting to obtain an immediate 
response in the season of P application—the concept of 
“feed the soil to feed the plant”.

Other soil properties may also influence cotton P 
responsiveness. Rochester (2010) conducted a P response 
experiment in paired sodic (Colwell P of 6.4  mg·kg−1 
and Exchangeable sodium percentage (ESP) of 9.3%) and 
non-sodic (Colwell P of 13.3  mg·kg−1 and ESP of 4.2%) 
sites and reported a lint yield response at the non-sodic 
site, despite Colwell P concentrations being well above 
the previously derived values of Dorahy et al. (2004). The 
lack of P responses at the sodic site, despite lower Col-
well P concentrations, suggests that soil sodicity may also 
limit cotton growth (Dodd et  al. 2013) and potentially 
impede crop P responses. Soil amelioration to minimise 
the sodicity also needs to be considered to improve the P 
fertiliser efficiency in those sodic soils. The P responses 
observed in recent trials, where Colwell P concentrations 
were greater than 6.0  mg·kg−1 (Schwenke et  al. 2021), 
indicate that critical Colwell P concentrations in the cot-
ton-growing soils of northern NSW are not fixed and are 
reliant on other soil and crop factors.

While yield responses were observed in Macquarie 
Valley soils when Colwell P concentrations were below a 
critical Colwell P concentration of 10.0 mg·kg−1 (Hulme 
2015), the sporadic crop responses to P fertiliser in 
other regions indicate that a single soil Colwell P criti-
cal value may not fit all cotton-growing soils. The current 
expansion of the cotton growing regions to the north-
ern Territory, northern Qld, northwest Western Aus-
tralia and southern NSW (Fig.  1), where the soil types 
are often different to Vertisols, further emphasises the 
need for regional or site-specific P management. Future 
research on improving P nutrition in cotton requires 
detailed mechanistic studies of the cotton plant and root 
responses in soils typical of each cotton-growing region 
under a variety of management approaches, including 
crop rotation, irrigation and soil management practices. 
Such research should incorporate a cropping system-
level approach to study the interaction of soil physics, 
chemistry and biology on P uptake by the cotton crop. 

In particular, the recent new knowledge of mycorrhi-
zal colonisation in sodic and non-sodic soils (Eskandari 
et  al. 2017b) determined under controlled environment 
conditions needs to be explored under field conditions 
to improve the understanding of the interaction between 
mycorrhiza and cotton plant response to applied P.

Cotton crop P accumulation and seed P export
P is removed from the field mainly  in harvested cotton 
seeds, with very little found in the lint (Bell 2014). Roch-
ester (2007) reported that exported cotton seed repre-
sented 69% and 60% of total plant P uptake for lint yields 
of 1 798 kg·hm−2 and 2 400 kg·hm−2, respectively. Seed 
P export is reported to range from 14 kg·hm−2 for a cot-
ton crop with lint yield of 975 kg·hm−2 to 28 kg· hm−2 for 
a cotton crop yielding 2  725  kg·hm−2 (Rochester 2007). 
The P export values derived from Rochester (2007) 
were likely higher than the industry average due to the 
high soil P status at the experimental sites. The differ-
ences in seed P concentration between experiments 
in southern Queensland (0.40%∼0.65%) and those in 
northwest NSW (0.56%∼0.84%) further emphasise that 
industry-average P removal is likely lower than the val-
ues suggested by Rochester (2007). A cotton crop with 
a lint yield of 2 724 kg·hm−2 would remove 28 kg·hm−2 
P  at harvest based on results reported in Rochester 
(2007) and 24  kg·hm−2 P  (with P removal of 2.5  kg per 
tonne of raw cotton and 45% lint turnout) based on Bell 
(2014). Regardless, crops that yield 2 724–3 178 kg·hm−2 
will need to accumulate 40–60  kg·hm−2 P  (Rochester 
and Constable 2015). Constable and Bange (2015) sug-
gested that to achieve a theoretical maximum lint yield 
of 5  000  kg·hm−2, the cotton crop would need to take 
up P of 83 kg·hm−2—a challenging proposition for soils 
with declining indigenous P availability throughout 
the soil profile. To consistently achieve cotton yields of 
3  632∼4  313  kg·hm−2 growers will face a challenge to 
optimise soil and irrigation management and its interac-
tion with relative immobile nutrients such as P. Further 
research is required to develop strategies to address these 
challenges.

Soil and crop management factors that could influence P 
acquisition and crop response
Bell (2014) concluded that future research needs 
to focus on the crop root responses to the method 
and placement of P fertiliser, and on the interaction 
between these factors and soil moisture dynamics in 
the P-enriched soil layers. Poor responses to applied P 
in the past have been attributed to decreased soil mois-
ture in the topsoil layers under rainfed conditions (Hib-
berd et  al. 1990; Singh et  al. 2005; Wang et  al. 2010). 
Irrigated cotton systems have the potential to maintain 
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optimum soil moisture conditions for crop P uptake, 
but irrigation systems and practices vary widely across 
the cotton industry. In Australian cotton farming sys-
tems, there are currently a range of soil and irrigation 
management practices that may have implications for 
cotton root responses including: (1) Skip-furrow irri-
gation with 1  m bed spacings, where every alternate 
furrow is irrigated for an extended period of time to 
saturate the soil profile; (2) Furrow irrigation with 1 m 
bed spacings, where every single furrow is irrigated; (3) 
Furrow irrigation with 1.5 m bed spacings, where every 
single furrow is irrigated; (4) 2  m beds, where every 
single furrow is irrigated; (5) Bankless channel irriga-
tion, where the entire field is saturated before water 
is drained into the next bay and (6) Lateral and pivot 
overhead irrigation, where irrigation is applied more 
frequently but in smaller amounts. Cotton growers 
using furrow irrigation systems utilise a range of deficit 
triggers to manage the frequency of irrigation events. 
All these types of irrigation, in conjunction with in-
crop rainfall, have different effects on the wetting and 
drying cycles of the soil which in turn will have impli-
cations for root growth and nutrient uptake. These 
wetting and drying cycles may also interact with other 
nutrients such as nitrogen to alter plant growth and P 
response. The ability of the cotton plant to utilise soil 
and applied P is further complicated by stratification of 
available P within the soil profile caused by long peri-
ods of continuous cropping, which will increasingly 
lead to a mismatch between the profile distributions of 
available P and where cotton roots are actively acquir-
ing water and nutrients.

To date, researchers of  the long-term irrigated cot-
ton cropping systems in Australia (Rochester 2007, 
2011; Hulugalle and Scott 2008; Hulugalle et  al. 2010) 
have not investigated cotton responses to P application 
under various cropping, tillage or irrigation systems. 
Adequate to high soil Colwell P concentrations at the 
Australian Cotton Research Institute long-term sites 
is a likely reason for the lack of attention to P fertiliser 
requirements earlier. Although the Colwell P levels of 
these sites have declined somewhat (Schwenke et  al. 
2021), these soils are still characterised by higher P 
availability than many newer regions growing cotton in 
Australia. Research is needed to find the most effective 
time and method for P application within a cotton crop-
ping system. The lack of strong responses to P applied 
directly before or at cotton planting, especially when 
banded, suggests that P may be more effective if applied 
to other crops in the cotton rotation. A good example 
is the glasshouse study by McLaren et al. (2013), which 
showed that the most effective P utilisation by cotton 

was obtained by applying P prior to sowing faba bean in 
a cotton-faba bean rotation.

Role of manures and organic wastes on P response
Organic amendments such as livestock manure, poul-
try manure, biosolids and cotton gin trash are gener-
ated in abundance in Australia. The benefits to soil 
health (Ghosh et al. 2008) and potential off-farm impacts 
(Nachimuthu et  al. 2021) of these amendments have 
been researched. Recently, the expansion of the cotton 
industry in southern NSW has resulted in greater explo-
ration of the benefits of locally available poultry manure 
(Quayle 2018) for cotton production. Previous studies 
on cotton-growing Vertisols suggested few short-term 
benefits to soil quality from the application of organic 
amendments (Ghosh et  al. 2008). A recent investiga-
tion in southern NSW identified significant variability 
in nutrient concentrations, including P, between differ-
ent batches of chicken manure (Quayle 2018). While this 
variability provides a challenge for nutrient budgeting for 
the cotton crop, Quayle (2018) reported the  benefits to 
soil P either through the conversion of organic P to inor-
ganic P from manure or from the release of P from other 
inorganic sources during the growing season. Future 
research should focus on the benefits of incorporating 
these locally available organic amendments (both in top-
soil and subsoil) in altering soil P pools over the short 
and longer term, its interaction with improvements in 
soil physical properties, and ultimately crop P nutrition.

Conclusion and future research gaps
This review focussed on results from Australian P ferti-
liser response trials. Enrichment of depletion or inherently 
low-P topsoil layers over the long term has provided yield 
benefits and reinforced the notion of feeding the soil (i.e. 
enhancing soil P fertility) to feed the plant. Future work 
needs to determine the responses of cotton to increasingly 
stratified soil P profiles and subsoil P depletion, especially 
in soils that have little movement of P down the profile. 
The cotton yield responses to P fertiliser in the Macquarie 
Valley and sporadic responses in northwest NSW and cen-
tral and southern Queensland suggest critical Colwell P 
concentrations may be needed for each cotton-growing 
region and soil type. Evidence of P stratification in soil pro-
files may mean critical P levels for subsoils also need to be 
considered alongside those for topsoils. However, for these 
studies to be undertaken efficiently, studies to improve the 
mechanistic understanding of interactions between ferti-
liser P applications and cotton roots are urgently required 
before large scale field programs are conducted. It seems 
clear that factors such as fertiliser placement, timing and 
possibly P product may be just as important, if not more 
so, than P rate in ensuring cotton crops are able to acquire 
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sufficient P to achieve high potential yields. Once these 
fundamentals of cotton root-P fertiliser interactions are 
better understood, future research should then focus on 
(1) studying the interaction of crop rotation, soil manage-
ment and P application timing on cotton P responses, to 
improve the cropping system productivity; (2) studying the 
interaction of wetting and drying cycles and nitrogen sup-
ply on cotton P response; (3) comparing annual P applica-
tions with larger applications every 3–5 years in terms of 
P use efficiency and overall farming system sustainability 
and soil health; and (4) investigating the effects of manure 
or compost applications on soil P dynamics and fertiliser 
P requirements of cotton grown on soils with physical 
constraints.
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