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Abstract 

Background Apolygus lucorum is a worldwide omnivorous pest damaging a range of crops and causing great 
economic losses. Symbiotic bacteria living in insects play a key role in the nutrition, physiology, and behavior of hosts. 
Here, we present an experiment using Illumina HiSeq sequencing targeting the V3–V4 regions of bacteria’s 16S rRNA 
throughout the entire life cycle of A. lucorum.

Results The first and second instar nymphs have the largest alpha diversity compared with other life stages of the 
insect. Bacterial phyla Proteobacteria (72.29%), Firmicutes (15.24%), Actinobacteria (7.76%) exhibit the largest relative 
abundance in all developmental stages. Erwinia (23.97%) and Lactococcus (10.62%) are the two genera with the high-
est relative abundance. The relative abundance of Erwinia in the nymph stage is significantly greater than the adult 
stage, and the relative abundance of Lactococcus in 6-day-old and 9-day-old adult females is higher compared with 
adult males.

Conclusions These results reveal that microbial community composition and relative abundance shift dynamically 
at different life stages, implying that different bacterial phyla and genera may have specific roles in specific life stages 
such as metabolism, nutrition absorption, detoxification, and reproduction. This study reveals for the first time the 
community composition and ecological dynamics of symbiotic bacteria throughout the life stages of A. lucorum, and 
thus may provide insight to new strategies for pest control.
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Background
Insects are the most diverse and abundant animals on 
Earth in terms of species number and physical biomass 
(Basset et  al. 2012). Almost all insects have microbial 
communities in their bodies. There are a large num-
ber of microbial symbionts in insects, including those 
obtained from the surrounding environment and food 
(Coolen et  al. 2022; Luo et  al. 2021). Bacteria that can 
establish a confirmed symbiotic relationship with the 
host are regarded as symbiotic bacteria (Kucuk 2020). 
Insects and symbiotic bacteria have a reciprocal relation-
ship, and microbial symbioses play an important role 
in the health, survival, and behavior of the host (Dillon 
and Dillon 2004; Kikuchi et al. 2007; Moran et al. 2008; 
Santos-Garcia et  al. 2017). Endosymbioses are not only 
related to the coevolution of plants and herbivores, but 
also play a profound role in the ecology and evolution 
of insects (Duron et  al. 2008; Kikuchi et  al. 2012; Pietri 
and Dangsheng 2018). Specifically, bacterial symbionts 
can provide nutrients for the host, facilitate host repro-
duction, protect the host from natural enemies, defend 
against pathogens, and promote host detoxification and 
metabolism to improve drug resistance (Broderick et al. 
2006; Ceja-Navarro et al. 2015; Cheng et al. 2017; Genta 
et al. 2006; Gerardo and Parker 2014; Heyworth and Fer-
rari 2015; Rolff and Siva-Jothy 2003; Scarborough et  al. 
2005; Sharon et al. 2010).

Hemipteran insects have a needle-like stylet that can 
be used for sucking plant sap. Some of them are notori-
ous agricultural pests responsible for serious economic 
losses, because they may not only suck the plant sap and 
kill crops directly, but also transmit plant viruses (Liu 
et  al. 2018; Qin et  al. 2018; Wang et  al. 2015). Apoly-
gus lucorum belongs to Miridae (Hemiptera) and is an 
important worldwide agricultural pest (Tan et al. 2018). 
A. lucorum has a wide range of plant hosts and can harm 
economic crops such as cotton, vegetables, and fruit 
trees. Due to the high density of wild population and 
their rapid growth rate, A. lucorum outbreaks erupt and 
spread geographically extremely easily (Lu et  al. 2007). 
Before the 1990s, A. lucorum was historically a minor 
cotton pest in China (Zhen et  al. 2016). However, since 
the large-scale adoption of transgenic Bacillus thuring-
iensis (Bt) cotton beginning in 1997, A. lucorum has grad-
ually become a destructive and pervasive cotton pest of 
serious economic importance with higher frequent out-
breaks (Lu et al. 2010). At present, chemical insecticides 
such as organophosphorus pesticides and pyrethroids are 
widely used in China to control A. lucorum (Zhen et al. 
2016). Furthermore, insecticide resistance could easily 
arise leaving an urgent and difficult to resolve A. luco-
rum outbreak. Moreover, the omnivorous nature of A. 
lucorum increases the difficulty of pest control (Wu et al. 

2010). Studies have shown that endosymbiotic bacteria 
facilitate insect hosts’ ability to easily form new feeding 
habits, expand food sources, and thus enhance the adapt-
ability of insects to the environment (Douglas 2009; Lü 
et  al. 2001). Similarly, there are a great deal of increas-
ing evidence of a link between symbiotic bacteria in 
insects and evolution of insecticide resistance (Broderick 
et  al. 2006; Engel and Moran 2013; Kikuchi et  al. 2012; 
Xia et al. 2013). Therefore, it is profoundly necessary to 
understand the composition and ecological dynamics of 
symbiotic bacteria in A. lucorum for the improvement of 
pest control.

Although the diversity of insect microbes has been 
extensively studied, most researchers focused on gut 
microbes (Hulcr et al. 2012; Roh et al. 2008; Salem et al. 
2013), and there are few longitudinal studies on the shifts 
in microbial communities in insect life cycles (Zhao 
et al. 2019). Therefore, this study focuses on A. lucorum, 
an important pest in cotton fields, and uses 16S rRNA 
high-throughput sequencing technology to system-
atically evaluate the microbial diversity of A. lucorum at 
multiple life stages to reveal changes in symbiotic bacte-
rial communities during the development of A. lucorum, 
and to  provide a solid theoretical basis for guiding pest 
control.

Materials and methods
Insect rearing and maintenance
A. lucorum adults were originally collected from the cot-
ton field in Wuhan, Hubei Province, China in July 2014. 
They were maintained in climate chambers at (75 ± 5)% 
relative humidity, (26 ± 2) ℃ temperature, 16 h: 8 h light: 
dark cycle, and fed with beans (Phaseolus vulgaris) and 
10% (mass fraction) sucrose solution (Tan et al. 2018).

Sample collection, DNA extraction, and 16S rRNA 
amplification sequencing
Nymphs of five developmental stages, and male and 
female adults at 1 day, 6 days and 9 days after eclosion of 
A. lucorum were randomly collected from colonies. Each 
life stage had six sample groups, and each group included 
20 insects. To remove microbial contaminants on the 
surface of insects, each sample was soaked in 70% (vol-
ume fraction) ethanol for 5 min, followed by 10% bleach 
(mass fraction) for 30  s, and then rinsed with sterile 
ultrapure water. DNA was extracted from whole insects 
using MagPure Stool DNA KF Kit B (Magen,  Shanghai, 
China) according to the manufacturer’s instructions. 
DNA was quantified using a Qubit Fluorometer with a 
Qubit dsDNA BR Assay Kit (Thermofisher, Massachu-
setts, USA), and the quality was assessed by performing 
an aliquot on 1% (mass fraction) agarose gel. The vari-
able regions V3–V4 of the bacterial 16S rRNA gene were 
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amplified with the degenerate polymerase chain reaction 
(PCR) primers 338F (5’-ACT CCT ACG GGA GGC AGC 
A-3’) and 806R (5’- GGA CTA CHVGGG TWT CTAAT-
3’). Both forward and reverse primers were tagged with 
Illumina adapter, pad, and linker sequences. PCR ampli-
fication was performed in a 50 μL reaction system con-
taining 30  ng template, fusion PCR primers, and PCR 
master mix. PCR cycling conditions were as follows: 94 
℃ for 3  min, 30 cycles of 94 ℃ for 30  s, 56 ℃ for 45  s, 
72 ℃ for 45 s, and a final extension at 72 ℃ for 10 min. 
PCR products were visualized with electrophoresis in a 
1.8% (mass fraction) agarose gel, then the gel was puri-
fied with VAHTS DNA Clean Beads (Vazyme Biotech, 
Nanjing, China), and quantified using the NanoDrop 
2000 (Thermo Fisher Scientific,  Massachusetts, USA). 
Validated libraries were sequenced on an Illumina 
HiSeq platform (BGI, Shenzhen, China) according to 
standard Illumina procedures and generated 2 × 300  bp 
paired-end reads. The sequences obtained in this study 
were deposited in the GenBank Short-Read Archive 
(SRA) with accession number PRJNA713416. Sequenced 
samples were labelled as follows: LL1: 1st instar nymph; 
LL2: 2nd instar nymph; LL3: 3rd instar nymph; LL4: 4th 
instar nymph; LL5: 5th instar nymph; LM1D: adult male 
at 1 day after eclosion; LF1D: adult female at 1 day after 
eclosion; LM6D: adult male at 6  days after eclosion; 
LF6D: adult female at 6 days after eclosion; LM9D: adult 
male at 9 days after eclosion; LF9D: adult female at 9 days 
after eclosion.

Bioinformatic analysis
Illumina sequencing data was processed with UCHIME 
(v8.1) and QIIME (v1.9.1) softwares. First, chimeric and 
low quality sequences were filtered out and removed 
from downstream analyses. Sequences were spliced using 
FLASH software (Magoc and Salzberg 2011), paired 
reads obtained by double-terminal sequencing were 
assembled into sequences by overlap relationship, and 
tags of hypervariable regions were obtained. The splic-
ing parameters were as follows: (i) minimum matching 
length of sequence was 15  bp; and (ii) allowable mis-
match rate of overlapping region was 0.1. UPARSE soft-
ware (Edgar 2013) was then used to cluster sequences at 
97% similarity and output the representative sequences 
of Operational Taxonomic Units (OTU). Chimeric 
sequences generated by PCR amplification were removed 
from the representative OTU sequences with UCHIME 
(v8.1) (Edgar et  al. 2011). All tags were compared with 
representative OTU sequences using usearch_global 
(Wang et  al. 2007). After obtaining representative OTU 
sequences, taxonomy assignment was performed by 
comparing OTU representative sequences with the 

SILVA database using the RDP classifier (v2.2) with a 
confidence threshold of 0.8.

Differences in community composition were visual-
ized by weighted unifrac and unweighted unifrac Prin-
cipal Component Analysis (PCA) in R software (v3.1.1). 
In order to detect the species richness and sequencing 
depth of each sample, mothur (v.1.31.2) and R (v3.1.1) 
software were used to calculate coverage, dilution curves, 
and six alpha diversity indices of community richness: 
Chao1, ACE, Shannon, Simpson, and Good’s coverage. 
The Kruskal–Wallis test was used to analyze the differ-
ence of relative abundance of species in three groups or 
more, P values < 0.05 were considered statistically signifi-
cant (*, 0.01 ≤ P < 0.05; **, 0.001 ≤ P < 0.01; ***, P < 0.001). 
In order to best visualize differences in species composi-
tion, QIIME (v1.9.1) and R (v3.1.1) softwares were used 
to cluster the samples by Unweighted Pair Group Method 
with Arithmetic Mean (UPGMA) to analyze beta diver-
sity. PICRUSt was used to predict bacterial community 
function based on OTU taxonomy and  relative abun-
dance, using on Kegg Orthology (KO).

Results
Sequencing quality analysis
Illumina HiSeq sequencing of 16S rRNA V3–V4 region 
amplicons from A. lucorum yielded a total of 5 336 031 
raw reads. Following demultiplexing, quality filter-
ing, and chimera removal, a total of 4 246 604 tags were 
used in downstream analysis and each of the 66 samples 
had an average of 64 342 high-quality sequences (Addi-
tional file  1: Table  S1). High-quality reads were spliced 
to yield hypervariable region tags, totaling 4 198 796 
tags. To each developmental stage of A. lucorum, 144 to 
505 OTUs were assigned with a similarity cutoff of 97% 
(Additional file 1: Table S1). Community richness, based 
on Good’s coverage, was 99% in all samples at a 3% dis-
similarity cutoff (Additional file  1: Table  S1) and rar-
efaction curves showed saturation, indicating that our 
sequencing had captured most of the bacterial diversity 
associated with A. lucorum (Additional file  1: Fig. S1). 
The observed species index dilution curve also tended to 
flatten, which verified that the depth of sequencing was 
sufficient to detect all of the bacterial species in the sam-
ple (Fig. 1A).

Bacterial community structure among different 
development stages in A. lucorum
Structural composition and classification analysis of 
microbial samples at different developmental stages of 
A. lucorum, revealed that Proteobacteria was the most 
abundant phylum. Among all samples, the top three 
phyla with the highest relative abundance are Proteobac-
teria (72.29%), Firmicutes (15.24%), and Actinobacteria 
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(7.76%) (Fig. 1B) (average of all samples). Bacterial com-
munity composition ratios shifted significantly at dif-
ferent developmental stages. The relative abundances 
of Proteobacteria in the male adult life stages LM9D 
(88.70%), LM6D (87.31%), and LM1D (87.65%) were the 
highest. In addition, the relative abundance of Proteobac-
teria was the lowest in the female adult life stage LF9D 
(49.52%), and the relative abundance of Proteobacteria 
notably reduced from the LF1D (80.70%) period when 
the female adult was just emerging (Fig.  1B and Addi-
tional file 1: Table S2).

In the nymph stages, the relative abundance of Pro-
teobacteria was the highest in the third instar nymph 
stage (77.27%), and the lowest in the fourth instar nymph 
stage (58.49%). Interestingly, the trend of Proteobacteria’s 
shifts in relative abundances was inverse to the trend of 
Firmicutes’ shifts in relative abundance in female adult 
stages. At different stages of female development, the 
relative abundances of Firmicutes increased from 9.04% 

to 43.14%. The relative abundances of Actinobacteria 
during the nymph stages were higher than those of the 
adult stages (Fig. 1B and Additional file 1: Table S2). Pro-
teobacteria, Firmicutes, and Actinobacteria showed sig-
nificant differences in relative abundances at different life 
stages (Additional file 1: Table S2).

Proteobacteria was the dominant phylum during the 
entire developmental period, and the Erwinia genus of 
Proteobacteria, was the most dominant genus (Fig.  1C, 
D). We combined stacked histograms with heat maps 
to demonstrate the trend of community changes at the 
genus level. Erwinia (23.97%), Lactococcus (10.62%) and 
Acinetobacter (8.57%) were the three most abundant gen-
era overall. Moreover, the relative abundances of Erwinia 
were higher than those of other genera during the devel-
opment of LL1 (22.14%), LL2 (33.34%), LL3 (44.65%), LL4 
(38.87%), LF1D (22.55%), LM1D (45.96%), and LM9D 
(17.24%) (Fig. 1C and Additional file 1: Table S3). Overall, 
the relative abundances of Erwinia in the nymph stages 

Fig. 1 Bacterial community dynamics among different developmental stages in Apolygus lucorum. A Observe species dilution curve. B Relative 
abundance of bacteria communities at the phylum level in different groups. C Relative abundance of bacteria communities at the genus level in 
different groups. D Heat map analysis of the top 15 microbial populations with relative abundance at different developmental stages, and the data 
represented by color in the figure are represented by  log2(relative abundance). (Bacteria with relative abundance lower than 0.1% in all samples 
were all merged into others. The “Kruskal–Wallis test” was used to analyze the differences of phyla at all developmental stages. * 0.01 ≤ P < 0.05, ** 
0.001 ≤ P < 0.01, and *** P < 0.001)
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were higher than adult stages. However, it is worth noting 
that the highest relative abundance of Erwinia appeared 
in newly emerged male adults. After 6 days of adult 
development, the relative abundances of Erwinia in each 
stage decreased (Fig. 1D and Additional file 1: Table S3). 
The relative abundances of Lactococcus in 6-day-old and 
9-day-old females were higher than those in males of the 
same age. Lactococcus was also the dominant genus in 
the LF6D (25.74%) and LF9D (42.81%). In addition, Aci-
netobacter’s relative abundance in the fifth instar nymph 
stage was much higher than that in the newly emerged 
adult (Fig. 1C, D and Additional file 1: Table S3).

Comparative analysis of microbiota diversity indices 
at different developmental stages
We used four metrics to explore alpha diversity: Chao1, 
Simpson, ACE, and Shannon indices (Fig.  2A–D and 
Additional file 1: Table S1). There were considerable dif-
ferences in the bacterial species diversity and richness 
of A. lucorum microbial communities at different devel-
opmental stages. The first and second instar nymphs 

had the highest bacterial community diversity and rich-
ness according to the Chao1, ACE and Shannon indices, 
and were considerably higher than all other develop-
mental stages, showing extremely high complexity. The 
low Simpson index value of the first and second instar 
nymphs also reflected the high diversity of bacterial spe-
cies in these two developmental stages. The community 
diversity was the lowest in the LM1D stage. Similarly, the 
community diversity also showed a low level in LF1D. 
The OTU totals of the first and second instar nymphs, 
498 and 505 respectively, were also the highest compared 
with other developmental stages. The  number of total 
taxa in the LM1D stage was the lowest (Additional file 1: 
Table S1).

The OTU flower diagram in Fig. 3A visualizes the com-
mon and unique microbial OTU numbers of insect host 
A. lucorum at various developmental stages. There were 
46 conserved OTUs at different developmental stages. 
Similarly, first instar nymphs and second instar nymphs 
had the most unique OTUs, 184 and 168 respectively, fol-
lowed by third-instar nymphs with 142 OTUs. Bacterial 

Fig. 2 Sequencing analysis of 16S rRNA gene amplicons of A. lucorum with diversity indices. A Chao1 index, B Simpson’ diversity, C ACE index, D 
Shannon’s diversity. “°” indicates an outlier



Page 6 of 11Xue et al. Journal of Cotton Research             (2023) 6:5 

species richness and diversity remained low from fourth 
instar nymph to adults. Similar results were found in 
the PCA analysis. The first thru third instar nymphs 
were clearly distinguished from fourth and fifth instar 
nymphs and adults (Fig. 3B). UPGMA analysis also veri-
fied the above results. The close clustering relationship 
of first thru third instar nymphs revealed their similarity, 
and the difference between males and females in differ-
ent developmental stages of adults was relatively small 
(Fig.  3C). The results of OTU flower, PCA, and cluster 
analysis revealed that the bacterial community diversity 
of the fourth instar nymph and the fifth instar nymph was 
closer to that of the adult A. lucorum microbiota. Both 
female and male communities were similar in each devel-
opmental stage, and the composition of the first thru 
third instar nymphs community was especially species 
rich.

Function prediction
Based on the predicted results of KO, the pathway 
abundance  was showed at three levels. In level 1, 
“Environmental Information Processing” accounted 
for 16.99% at all developmental stage, followed by 
“Metabolism” (16.59%) and “Brite Hierarchies” (8.71%) 
(Fig. 4). In level 2, “Membrane transport” (16.99%) was 
the pathway with the highest relative abundance. In the 
metabolic pathways, the relative abundances of “Carbo-
hydrate metabolism” (3.90%), “Amino acid metabolism” 
(3.65%), and “Nucleotide metabolism” (3.35%) were the 
three highest pathways. “Transporters” (7.09%) and 
“ABC transporters” (4.43%) were the two pathways with 
the highest relative abundance of level 3, followed by 
“Two-component system” (2.28%) and “Secretion sys-
tem” (2.19%), both of which belong to “Environmental 
Information Processing”. “Purine metabolism” (1.98%), 

Fig. 3 Bacterial community dynamics among different developmental stages in A. lucorum. A Flower of OTU to show common and unique 
OTUs for all samples. B Comparison of bacterial community structures in development stages using unweighted uniFrac metrics. C Unweighted 
pair-group method with arithmetic means (UPGMA) analysis of microbial community structure based on 16S rRNA gene amplicon sequencing data
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“Ribosome” (1.62%) and “Pyrimidine metabolism” 
(1.36%) had higher relative abundance in “Metabolism”.

Discussion
Although the diversity of microbes associated with insect 
hosts had been widely studied, most studies were limited 
to the intestinal tract of insects (Augustinos et al. 2019; 
González-Serrano et al. 2020; Muratore et al. 2020; Wei 
et al. 2017; Xia et al. 2018), and there were few longitu-
dinal studies on microbial diversity throughout the life 
cycle of insects. Here, we present the first research that 
we know of on microbial composition and ecology dur-
ing the life cycle of the insect A. lucorum. It is well known 
that the bacterial community in wild-type insects is very 
different from that raised in the laboratory for a long 
time (Rani et  al. 2009), and different geographical areas 
will also affect microbial diversity (Zouache et al. 2011). 
Temperature is also an important factor affecting insect 
bacterial community (Kikuchi et al. 2016). Although the 
experimental samples were collected from the field, the 
bacterial community in A. lucorum was relatively stable 
after countless generations of breeding in the labora-
tory. In this study, we used the next-generation sequenc-
ing technology to comprehensively identify and analyze 
the microbial communities at different developmental 

stages of A. lucorum. We found that phyla Proteobacte-
ria, Firmicutes, and Actinobacteria dominated at vari-
ous developmental stages (Fig.  1B), which was similar 
to microbiota composition of other insect symbiotic 
communities (Chen et  al. 2018; Gao et  al. 2020; Mason 
and Raffa 2014; Zhao et  al. 2019). Bacterial community 
structure and diversity are distinct at different develop-
mental stages of insect host A. lucorum. Microorganisms 
that affect evolutionary and ecological processes such 
as developmental, physiological, and ecological interac-
tions exist in many insects (Currie et al. 1999; Engel and 
Moran 2013; Hammer et al. 2017). Although the micro-
bial composition of A. lucorum was significantly diverse 
in the first and second instar nymph stages, the bacte-
rial diversity observed in the later developmental stages 
was significantly reduced (Fig. 1A). This phenomenon of 
reduced bacterial diversity has the same evidence in the 
nymph of Adelphocoris suturalis, and the direct influ-
encing factor may be the transformation of a carnivo-
rous diet (Luo et al. 2021). A. lucorum’s habit of feeding 
on eggs or smaller members of the nymph during mid-
development is very similar to that of A. suturalis, which 
may well explain the decrease in microbial diversity (Xue 
et al. 2021).

Fig. 4 Relative abundance of the top 30 KEGG Orthology (KO) in all developmental stages of A. lucorum 
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A. lucorum is an insect with incomplete metamorpho-
sis. According to PCA and UPGMA analysis, the bacte-
rial community diversity of fourth instar nymphs and 
fifth instar nymphs was closer to that of adults. During 
the transition period from nymph to adult, the diversity 
and structure of microorganisms did not change signifi-
cantly compared with completely metamorphic insects 
(Zhao et al. 2019). In general, compared with Hyalesthes 
obsoletus (Iasur-Kruh et al. 2017) and Myzus persicae (Xu 
et  al. 2020) of Hemiptera, the microflora of A. lucorum 
showed higher biodiversity. There are great differences 
in microbiomes of different insects, and the microbial 
diversity of the same insect species is also affected by 
many factors, such as in  vitro environment (Zouache 
et  al. 2011), artificial feed (Priya et  al. 2012) and food 
sources (Broderick et al. 2004; Priya et al. 2012). Because 
A. lucorum is a highly omnivorous pest, it can feed not 
only on plants, but also on some small insects or eggs (Li 
et al. 2016; Lu et al. 2008; Yuan et al. 2013). Complex eat-
ing habits may lead to differences in bacterial community 
diversity and species richness.

Erwinia, which belongs to Gram-negative family 
Enterobacteriaceae, is both an important intestinal 
bacterium (Basset et al. 2000) and a symbiote of many 
arthropods (Estes et al. 2012; Iasur-Kruh et al. 2017). In 
this study, Erwinia populations were found to be con-
tinuous throughout the development cycle, indicating 
that Erwinia a persistent symbiont and maybe impor-
tant in the growth, development, and survival of A. 
lucorum. Erwinia can metabolize most nitrogen, sulfur, 
and phosphorus sources (Friedl et al. 2008), indicating 
an important role in the digestion and metabolism of 
insects. Similarly, Candidatus Erwinia dacicola may 
also benefit the larval stage of the fruit fly (Estes et al. 
2012). Olives, especially unripe olives, are defended 
with antimicrobial secondary metabolites (Levinson 
and Levinson 1984). Fruit fly larvae lacking symbiont C. 
Erwinia dacicola can not survive in unripe olives and 
few can pupate when olives are ripe (Estes et al. 2012). 
In this study, the average relative abundance of Erwinia 
in the  nymph stage was higher than that in the  adult 
stage, which was consistent with previous studies (Yong 
et al. 2017). We hypothesize that the nymphs’ digestion, 
metabolism, and drug resistance is weaker than adults, 
and that Erwinia can degrade complete plant tissues 
and produce antimicrobial agents to help  A. lucorum 
larvae grow and develop, thus helping A. lucorum have 
a strong ability to cope with complex environments. 
Our functional prediction results also give another 
explanation: most bacterial functions are concen-
trated in “Environmental Information Processing” and 
“Metabolism” to meet the adaptability of insects to the 
environment. Further research might include genome 

sequencing of Erwinia symbionts to explore these 
metabolic roles. Interestingly, Erwinia is also the main 
pathogenic source of soft rot in fruits, vegetables, and 
ornamental plants (Grenier et al. 2006). It can secrete a 
variety of cell wall degrading enzymes, causing potato 
black leg disease, soft rot, Fusarium wilt, and other 
plant diseases (Whitehead et  al. 2002). In the process 
of feeding, A. lucorum uses its needle tip to pierce plant 
tissues, inject saliva digestive enzymes, and ingest liq-
uefied plant substances. Polygalacturonase is one of the 
enzymes that can digest plant tissues and cause dam-
age to plant tissues (Liu et  al. 2021). Further research 
is needed to elucidate if A. lucorum spreads the plant 
pathogen Erwinia.

At the same time, we also found that the average rela-
tive abundance of Lactococcus was higher in female 
adults than in male adults. Six-day-old female adults 
we selected were samples obtained based on the pre-
oviposition data of A. lucorum (Zhen et al. 2018). Lac-
tococcus is abundant in the insect intestinal tract (De 
Jonge et al. 2020), and can decompose sugars, produce 
organic acids, reduce the pH value of the environment, 
and resist some acid-sensitive pathogenic bacteria 
(Evans and Armstrong 2006). These bacteria are well-
known for the ability to ferment complex carbohydrates 
and produce lactic acid, which can be oxidized to pyru-
vate and participate in the tricarboxylic acid cycle, and 
which can also be converted into glucose in the liver, 
thus playing an important role in the insect nutritional 
pathway, and the nutritional pathways of some insects 
are closely related to reproduction (Carpenter et  al. 
2012; Hansen et al. 2004; Koyama et al. 2013; Lu et al. 
2016; Pérez-Hedo et  al. 2013; Roy and Raikhel 2011; 
Sancak et  al. 2008). Therefore, we speculate that Lac-
tococcus may have an important connection to the 
reproduction of A. lucorum. However, Wolbachia and 
Rickettsia that  are ubiquitous in several other arthro-
pods and play an important role in insect reproduction 
(Duguma et al. 2013; Rasgon and Scott 2004), were  not 
detected during multiple developmental stages of A. 
lucorum in this study.

In this study, we provide an understanding of the 
symbiotic biodiversity and community composition 
dynamics in different life cycle stages of A. lucorum. 
This knowledge of the A. lucorum microbiome may lead 
to important practical applications in the development 
of microbially based strategies for the management of 
insect pests (Crotti et  al. 2012). For example, future 
pest control might be based on targeting essential 
microbial symbionts to insect host survival and thus 
eliminating host insect pest. Similarly, this research 
might inform future pest control which may involve 
preventing microbe-facilitated insecticide resistance in 
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host microbe.These results provide an important theo-
retical basis for the control of A. lucorum, including the 
theoretical relationship between drug resistance and 
reproduction of microorganisms in A. lucorum, and 
thus provide novel approaches for guiding new pest 
control strategies.

Conclusion
The bacterial community composition and diversity of 
A. lucorum changed at different developmental stages, 
and these bacteria have potentially important functions 
in different developmental stages. The high abundance 
of Erwinia reflects that it plays an important role in 
the physiology and biochemistry of A. lucorum, involv-
ing important functions such as metabolism, nutrition 
absorption and detoxification. Lactococcus, the domi-
nant genus in LF6D and LF9D period, may be the key 
genus in the reproduction of female A. lucorum. More 
research is needed to verify the function of these bacte-
ria. This research reveals for the first time the commu-
nity composition and ecological dynamics of symbiotic 
bacteria throughout the life stages of A. lucorum, and 
thus may provide insight to new strategies for pest 
control.
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