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Abstract 

Background To control the boll weevil Anthonomus grandis grandis (Coleoptera: Curculionidae), a key pest of cotton 
in the Americas, insecticides have been intensively used to manage their populations, increasing selection pressure 
for resistant populations. Thus, this study aimed to detect insecticide resistance and assess insecticide control failure 
likelihood of boll weevil populations exposed to malathion, profenophos + cypermethrin, and fipronil insecticides.

Results Twelve populations of the boll weevil were collected from commercial cotton fileds of the state of Bahia, 
northeastern Brazil. These populations were exposed to malathion, profenophos + cypermethrin mixture, and fipronil, 
at their respective maximum label dose for field applications. Three replicates of 10 adult beetles were exposed 
to the insecticides and mortality was recorded after 24 h treatment. The control failure likelihood was determined 
after 48 h. Highest median lethal times (LT50) were observed for malathion and the profenophos + cypermethrin 
mixture. Resistance to at least one insecticide was detected in 11 populations; three populations were resistant 
to malathion and profenophos + cypermethrin; seven were resistant to all insecticides tested. The resistance levels 
were low (< 10-fold) for the three insecticides. Among 12 populations tested, 58% of them exhibited significant risk 
of control failure for the insecticides malathion and profenophos + cypermethrin. The insecticide fipronil was efficient 
for the control of the boll weevil in 83% of the populations.

Conclusions The results confirm the significant risk of insecticide control failure in the boll weevil populations 
to the main compounds used in the region. Thus, proper insecticide resistance management plans are necessary 
for the boll weevil in the region, particularly for malathion and profenophos + cypermethrin insecticides.
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Introduction
Brazilian cotton production has been growing consid-
erably over the past few years. By 2023, the perspective 
of Brazilian planted area is 1.64 million hectares, with a 
production of 2.97 million tons (t), and an export esti-
mate of 2.05 million tons, representing a 19.7% growth 
compared with the 2020/2021 harvest season (Com-
panhia Nacional de Abastecimento 2022). The scenario 
of cotton production in Brazil is promising, being 75% 
cultivated in the state Mato Grosso, which has made the 
country one of the largest exporters in the world (Asso-
ciação Brasileira dos Produtores de Algodão 2023). In 
the Northeast region, Bahia, Piauí, and Maranhão stand 
out as the main cotton-producing states (Ximenes and 
Coêlho 2021). Bahia is the second largest national pro-
ducer, with a production of 1.3 million tons of cotton 
seed and 0.50 million tons of lint cotton (Companhia 
Nacional de Abastecimento 2021).

Among the challenges faced by the Brazilian cotton 
producers, the damages caused by the boll weevil, Antho-
nomus grandis grandis  (Perkin  2023) (Coleoptera: Cur-
culionidae), are certainly worrying and a major threat 
to cotton production in the country (Azambuja and 
Degrande 2014). The females of this insect lay their eggs 
inside reproductive structures such as flowers, buds, 
squares, and bolls, causing their abscission resulting in 
production losses (Showler and Cantú 2005). Their ovi-
position takes several days, allowing for a gradual emer-
gence of the adults and requiring successive insecticide 
spraying for interruption of the insect life cycle (Showler 
2012). Control measures are recommended when 3%-5% 
of the flower buttons have the presence of adult boll wee-
vils and/or attack signs (oviposition and nutrition) caused 
by the insect (Bélot 2016).

Chemical control is practically the only method used 
to reduce the population outbreaks of the boll weevil, 
with an average of 19 insecticide applications per culti-
vation cycle in the state of Bahia (Fundo para o Desen-
volvimento do Agronegócio do Algodão 2019). The 
overuse of insecticides in cotton crops without pest 
resistance monitoring can make chemical control expen-
sive and inefficient (Ullah et al. 2021). The use of insec-
ticides may also cause adverse environmental effect, 
and increases selection of resistant insect populations 
(Guedes and Cutler 2014). This fact is aggravated by 
the fact that cotton in Brazil is one of the crops that use 
more synthetic pesticides (Pignati et al. 2017).

Insecticide resistance is a genetic change in response to 
selection by toxicants that impair field control of the pest 
species population or, in other words, may lead to insec-
ticide control failure (Guedes 2017; Insecticide Resist-
ance Action Committee  2022). Therefore, resistance 
monitoring and detection are critical to understanding 

and addressing existing and developing insecticide resist-
ance problems (Sparks et  al. 2021). The early detection 
of resistance allows for a greater chance of delaying the 
evolution of insecticide resistance, and sometimes rees-
tablishing the susceptibility of pest insects to insecti-
cides and other control methods (Insecticide Resistance 
Action Committee 2022). Thereby, it is important for the 
management of boll weevil in cotton areas, thus provid-
ing benefits to the integrated pest management (IPM) 
(Arruda et al. 2021).

For the control of boll weevil in Brazil, 137 com-
mercial insecticide formulations are registered, count-
ing 27 commercialized active ingredients belonging to 
the chemical classes of pyrethroids, phenyl pyrazoles, 
organophosphates, carbamates, neonicotinoids, and 
others (Sistema de Agrotóxicos Fitossanitário 2022). 
Among these, the organophosphate malathion is one 
of the most used insecticides (Rolim et  al. 2019). In a 
recent survey, it was found that the most commonly 
used insecticides for boll weevil control in the Bra-
zilian cerrado were malathion, fipronil, carbosulfan, 
thiamethoxam + lambda-cyhalothrin, amd profeno-
fos + cypermethrin (Torres 2022). Studies on the detec-
tion of boll weevil insecticides resistance have focused 
on malathion, beta-cyfluthrin, and zeta-cypermethrin 
in insect populations of the state of Mato Grosso, 
but insecticide resistance was detected at the time 
(Oliveira-Marra et  al. 2019). More recently, popula-
tions of boll weevils from the states of Pernambuco, 
Ceará, and Mato Grosso exposed to malathion and 
beta-cyfluthrin exhibited high levels of resistance to 
beta-cyfluthrin (Rolim et al. 2021). In boll weevil popu-
lations from Texas, USA, malathion resistance was not 
detected, but temporal and qualitative differences in 
gene expression were identified in isoforms of detoxi-
fying esterase B1 and glutathione-S-transferases, which 
can be associated with organophosphate resistance 
(Perkin et al. 2023).

The constantly high population levels of boll weevils in 
the cotton fields of Bahia, associated with the intensive 
use of insecticides, raise the concern that some popula-
tions of this pest are likely resistant to the main insecti-
cides used against them. Thus, this study aimed to detect 
and determine the resistance levels in Bahia populations 
of the boll weevil to the malathion, profenophos + cyper-
methrin, and fipronil, and to assess the associated risk of 
insecticide control failure.

Materials and methods
Insects and insecticides
The boll weevil populations were collected in 12 prop-
erties located in two cotton-producing meso-regions in 
the state of Bahia, Brazil – west (2) and southwest (10) 
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(Table 1) in the 2021/2022 season. The VCA1 code refers 
to the susceptible population collected from the Agricul-
tural Field Station of the State University of Southwest 
Bahia, in the county of Vitória da Conquista (Bahia). This 
population has been maintained without exposure to 
insecticides and is approximately 320 km away from the 
commercial cotton production farms in the state. Each 
sampling site was georeferenced using a receptor of the 
global positioning system (GPS) (Garmin E-Trex Vista 
HCx, Olathe, Kansas, USA).

To collect adults of known ages to be used in the bio-
assays, we gathered cotton flower buds with signs of 
oviposition following the methodology proposed by 
Oliveira-Marra et  al   (2019). The buds were packed in 
rectangular plastic trays (30  cm × 45  cm × 50  cm) and 
closed with organza fabric until the emergence of the 
adults, which were daily collected and packed in trans-
parent plastic pots (volume of 500 mL) containing cotton 
moistened in water and cotton flower buds (for nutri-
tion). The preservation of the boll weevils, as well as the 
performance of the bioassays, were conducted in an accli-
matized room at a temperature of 25 °C ± 2 °C, photoper-
iod of 12 h/12 h (light/dark), and relative humidity from 
50% to 70%. The bioassays were performed with newly 
emerged boll weevils (between 1 and 3 days of age).

A survey was conducted on the most commonly 
used products by local producers in cotton cultivation 
to control the boll weevil in the state of Bahia, and the 
consequent risk of failure of these products: malathion 
(active ingredient 1 000  g·L−1, emulsifiable concentrate; 
produced by FMC Chemical of Brazil Ltd., Campinas, 
SP, Brazil), profenophos + cypermethrin (active ingre-
dient 400  g·L−1 + 40  g·L−1, emulsifiable concentrate; 
produced by Syngenta Crop Protection Ltd., São Paulo, 
SP, Brazil), and fipronil (active ingredient 600  g·L−1, 

emulsifiable concentrate; produced by Ouro Fino Chemi-
cal Ltd., Uberaba, MG, Brazil).

According to the IRAC classification (2022), malathion 
belongs to the chemical subgroup of organophosphates 
(1B), which are acetylcholinesterase (ACE) inhibitors; 
profenofos + cypermethrin consists of the combination of 
an organophosphate (1B) and a pyrethroid (3A), acting as 
acetylcholinesterase inhibitor and modulator of sodium 
channels, respectively; and fipronil is included in the sub-
group of phenylpyrazoles (2B), which acts in the blockage 
of chloride channels mediated by gamma-aminobutyric 
acid (GABA).

Time‑mortality bioassays
The insecticides were used in their commercial formu-
lation with the maximum concentration prescribed in 
the package insert for field use considering the spraying 
rate of 300 L·ha−1 for malathion and fipronil, and 200 
L·ha−1 for profenophos + cypermethrin, according to 
the label rates, as registered at the Brazilian Ministry of 
Agriculture (Sistema de Agrotóxicos Fitossanitário 2022) 
following the manufacturer’s recommendations. Dis-
tilled water was used as the diluent. Thus, the dosages of 
active ingredients used were 2 000  g·ha−1 of malathion, 
400 g·ha−1, 40 g·ha−1 of profenophos + cypermethrin, and 
78 g·ha−1of fipronil. Petri dishes (9.0 cm diameter, 1.5 cm 
height) received 1.0  mL of the insecticide coatings and 
were subsequently dried out at room temperature for 
24  h. Each of the three replicates consisted of 10 adult 
boll weevils  (unsexed) from the same population, which 
were placed on the Petri dish treated with the respective 
insecticide. The sides of the plates were impregnated with 
a layer of neutral talc to prevent the insects from crawl-
ing the container and escaping. Mortality assessments 
were performed every 24  h after insecticide exposure, 

Table 1 Identification and geographic coordinates of the sampling sites of the boll weevil (Anthonomus grandis grandis) populations 
in the state of Bahia, Brazil

Meso‑region County Boll weevil code Longitude Latitude

West Luís Eduardo Magalhães LEM1  − 11° 98′ 51.9″  − 45° 73′ 16.5″
Luís Eduardo Magalhães LEM2  − 11° 55′ 53.1″  − 45° 43′ 45.5″

Southwest Bom Jesus da Lapa BJL1  − 13° 10′ 09.4″  − 43° 06′ 20.6″
Candiba CAN1  − 14° 20′ 16.0″  − 42° 54′ 49.8″
Candiba CAN2  − 14° 20′ 48.3″  − 42° 54′ 16.8″
Guanambi GBI1  − 14° 20′ 42.0″  − 42° 57′ 25.9″
Palmas de Monte Alto PMA1  − 14° 14′ 51.3″  − 43° 18′ 25.4″
Palmas de Monte Alto PMA2  − 14° 17′ 59.4″  − 43° 16′ 31.3″
Pindaí PIN1  − 14° 34′ 59.8″  − 42° 43′ 19.2″
Pindaí PIN2  − 14° 34′ 45,7″  − 42° 43′ 15.8″
Pindaí PIN3  − 14° 27′ 16.8″  − 42° 42′ 23.8″
Vitória da Conquista VCA1  − 14° 88′ 91.3″  − 40° 80′ 08.8″
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and then daily until the mortality of all adults. A con-
trol treatment (witness) maintained only with distilled 
water was applied to determine the natural mortality 
of the insects. Mortality was registered by transferring 
each adult to glass plates that were placed on a hot plate 
(35  °C) to stimulate the movement of any boll weevil 
that would pretend to be dead (Rolim et  al. 2021); Tor-
res 2022). Adults that would not move in such conditions 
over an observation period of one minute were consid-
ered dead.

Statistical analyses
The survival results of the time-mortality bioassays were 
subjected to survival analysis using Kaplan–Meier esti-
mators to generate the respective median survival times 
(lethal time, LT50) for each population and insecticide. 
The survival curves to each population for each insecti-
cide were compared using the Holm-Sidak test (P < 0.05) 
(SigmaPlot 12.5, 2013, Systat, San Jose, CA, USA). The 
resistance levels or resistance ratios (RR) to the referred 
insecticides were estimated by dividing the LT50 of a 
given population by the LT50of the susceptible popula-
tion. The resistence ratios (RR) and their 95% confidence 
intervals were calculated following the method described 
by Robertson et al. (2007), and these were considered sig-
nificant when the confidence interval did not include the 
value 1.0 (Robertson et al. 2007). The significance of the 
estimated resistance levels was determined as previously 
described (Tuelher et al. 2018; Oliveira-Marra et al. 2019; 
Leite et al. 2020).

The mortality of the boll weevils within 48 h was used 
to estimate the control efficacy, duly corrected by the 
natural mortality recorded in the (untreated) controls 
(Abbott (Abbott 1925)). The control failure likelihood 
(CFL) was determined using the 48 h mortality data, fol-
lowing Guedes’ (2017) formula:

A practical discriminatory concentration (the field-
use label rates) was used to monitor control failure of 
the insecticides tested [based on the minimum efficacy 
required for insecticides (80% mortality)] (Ministé-
rio da Agricultura Pecuária e Abastecimento  1995). 
The expected  (80%) is the minimum efficacy limit 
expected for insecticide registration in Brazil (Ministé-
rio da Agricultura Pecuária e Abastecimento 1995). The 
results of the risks of control failure were compared 
through a Z test (P< 0.05) with continuity correction to 
verify the populations with significant risk of control 
failure (Dângelo et al. 2018).

The relationship between the insecticide resistance 
levels and their respective control failure likelihood was 

CFL(%) = 100−
reached mortality (%)× 100

expected mortality (%)

tested through regression analysis using the curve-fitting 
procedure of TableCurve 2D (Systat, San Jose, CA, USA). 
The model selection was based on parsimony, high F val-
ues (and reduced error), and steep increase in R2 with the 
model complexity.

Results
LT50 and survival of boll weevil the insecticides
LT50 varied between 24 and 77 h for malathion and pro-
fenophos + cypermethrin, and from 24 to 61 h for fipronil 
(Table  2). Eleven populations exhibited resistance to at 
least one insecticide, while 7 populations, LEM1, LEM2, 
BJL1, CAN1, PMA1, PMA2, and PIN2, exhibited resist-
ance to these three insecticides. Resistance to mala-
thion was found in 10 populations (LEM1, LEM2, BJL1, 
CAN1, CAN2, GBI1, PMA1, PMA2, PIN2, and PIN3), 
11 populations were resistant to profenophos + cyper-
metrin (LEM1, LEM2, BJL1, CAN1, CAN2, GBI1, PMA1, 
PMA2, PIN 1, PIN2, and PIN3); seven populations were 
resitant to fipronil ( LEM1, LEM2, BJL1, CAN1, PMA1, 
PMA2, and PIN2) (Tables 2 and 3).

The LEM1, PMA2, GBI1, and PIN2 populations were 
capable of surviving for up to 96  h after being exposed 
to malathion. The similar LT50 was found for the BJL1, 
PMA2, CAN, and PIN3 populations when exposed to 
profenophos + cypermethrin. For fipronil, the highest 
survival time reached 72 h for the LEM1 and LEM2 pop-
ulations (Tables 2 and 3).

The survival curves of the boll weevil populations 
varied according to the insecticide tested (Fig.  1A). 
When exposed to water, after 96  h, 80% of the indi-
viduals of each population were alive. The survival time 
was longer for malathion and profenophos + cyper-
methrin, reaching total death within 96 h. For fipronil, 
the survival time was 72  h. The survival probabilities 
for the boll weevils of the PIN3, CAN2, PMA2, and 
BJL1 populations after 72 h were superior to 38% when 
exposed to malathion (Fig. 1B). Similar time probabili-
ties were found for the LEM1, PMA2, GBI1, and PIN2 
populations when exposed to profenophos + cyperme-
thrin (Fig.  1C). For fipronil, 60% of the boll weevils of 
the LEM1 and LEM2 populations survived until 72  h 
(Fig. 1D).

The resistance ratio and risk of control failure
The RR values varied between 1.00 and 3.21 times 
for malathion, from 1.00 to 3.23 times for pro-
fenophos + cypermethrin, and from 1.00 to 2.54 times 
for fipronil (Table  3). The resistance levels were low 
(< 10-fold) for all insecticides.

The final mortality of the boll weevil populations 
also varied according to the insecticide tested, between 
10.00% and 100.00% for malathion and from 16.7% to 
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100.00% for profenophos + cypermethrin and fipronil. 
Ten and eleven populations exposed to malathion 
and profenophos + cypermethrin, respectively, did 
not reach the minimum efficacy limit of 80% of mor-
tality (Ministério da Agricultura Pecuária e Abasteci-
mento 1995). However, fipronil proved more efficient at 
controlling the boll weevil since 8 populations (PMA1, 

GBI1, CAN1, CAN2, PIN1, PIN2, PIN3, and VCA1) 
reached mortality levels above the minimum limit of 
80% (Table3).

The risk of control failure was significant for mala-
thion and profenophos + cypermerin in 7 populations. 
For fipronil, only 2 boll weevil populations exhibited a 
significant risk of control failure (Table 3).

Table 2 The median lethal times (LT50) of the boll weevil (Anthonomus grandis grandis) populations exposed to the malathion, 
profenophos + cypermethrin, and fipronil insecticides. Values of LT50 followed by the same letter do not differ significantly according to 
the Holm-Sidak test (P < 0.05). The values of χ 2 and P refer to the difference between the populations concerning the same insecticide

χ2 = Chi-square; P = Probability

Insecticide Meso‑region County Boll weevil code LT50/h Confidence 
interval (95%)

χ2 P

Malathion West Luís Eduardo Magalhães LEM1 64.45b 61.13–67.78 459.99  < 0.001

Luís Eduardo Magalhães LEM2 60.96bc 57.54–64.38

Southwest Bom Jesus da Lapa BJL1 67.29ab 62.31–72.28

Candiba CAN1 44.40d 42.20–46.60

Candiba CAN2 77.01a 72.63–81.38

Guanambi GBI1 62.28b 59.09–65.47

Palmas de Monte Alto PMA1 42.40d 39.80–45.00

Palmas de Monte Alto PMA2 71.03a 65.99–76.06

Pindaí PIN1 24.00e 24.00–24.00

Pindaí PIN2 55.14bc 51.41–58.87

Pindaí PIN3 74.16a 69.21–79.11

Vitória da Conquista VCA1 24.00e 24.00–24.00

Profeno‑
fos + cyperme‑
thrin

West Luís Eduardo Magalhães LEM1 77.52a 73.20–81.83 405.18  < 0.001

Luís Eduardo Magalhães LEM2 61.78ab 58.45–65.11

Southwest Bom Jesus da Lapa BJL1 56.17b 52.39–59.95

Candiba CAN1 64.82a 61.55–68.09

Candiba CAN2 41.60c 38.88–44.32

Guanambi GBI1 70.49a 65.50–75.48

Palmas de Monte Alto PMA1 39.20c 36.25–42.16

Palmas de Monte Alto PMA2 70.28a 65.71–74.86

Pindaí PIN1 39.20c 36.25–42.16

Pindaí PIN2 70.50a 65.73–75.27

Pindaí PIN3 57.00b 53.08–60.92

Vitória da Conquista VCA1 24.00d 24.00–24.00

Fipronil West Luís Eduardo Magalhães LEM1 61.02a 57.66–64.38 410.54  < 0.001

Luís Eduardo Magalhães LEM2 61.02a 57.66–64.38

Southwest Bom Jesus da Lapa BJL1 41.60bc 38.89–44.32

Candiba CAN1 38.00bc 34.98–41.02

Candiba CAN2 24.00d 24.00–24.00

Guanambi GBI1 24.00d 24.00–24.00

Palmas de Monte Alto PMA1 38.00bc 34.98–41.02

Palmas de Monte Alto PMA2 40.40bc 37.55–43.26

Pindaí PIN1 24.00c 24.00–24.00

Pindaí PIN2 37.20c 34.15–40.25

Pindaí PIN3 24.00d 24.00–24.00

Vitória da Conquista VCA1 24.00d 24.00–24.00
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Relationship between resistance and risk of control failure
The relationship between the resistance ratio and the 
probability of control failure was significant for mala-
thion (Fig.  2A), profenophos + cypermethrin (Fig.  2B), 
and fipronil (Fig. 2C). The risk of control failure for these 
insecticides is correlated to the respective resistance 
level.

Discussion
Despite the possibilities of integrating cultural, biologi-
cal, and behavioral tactics for the management of the 
boll weevil, cotton farmers worldwide remain extremely 
dependent on the use of insecticides for this pest spe-
cies suppression (Anderson et al. 2019). The boll weevil 
can be present throughout the reproductive phase of the 

Table 3 Resistance ratio and control failure likelihood in boll weevil (Anthonomus grandis grandis) populations exposed to the 
malathion, profenophos + cypermethrin, and fipronil insecticides

CI 95% Confidence interval at 95% of probability, RR Resistance ratio (LT50 of the resistant population/LT50 of the susceptible population). *Mortalities followed by an 
asterisk are significantly inferior to the minimum efficacy limit of 80% (unilateral Z test with confidence level of 95% with correction for continuity and correction of 
Bonferroni; n = 120), according at the Brazilian Ministry of Agriculture (MAPA 1995)

Insecticide Meso‑region County Boll weevil code RR (CI 95%) Mortality 
[Control failure 
likelihood]/%

Malathion West Luís Eduardo Magalhães LEM1 2.69 (2.40—2.68) 26.7 [62.5]*

Luís Eduardo Magalhães LEM2 2.54 (3.03—3.39) 20.0 [12.5]*

Southwest Bom Jesus da Lapa BJL1 2.80 (2.60—3.01) 73.3 [8.3]*

Candiba CAN1 1.85 (1.76—1.94) 30.0 [0.0]

Candiba CAN2 3.21 (3.03—3.39) 20.0 [29.2]*

Guanambi GBI1 2.60 (2.46—2.73) 10.0 [20.8]*

Palmas de Monte Alto PMA1 1.77 (1.66—1.87) 46.7 [0.0]

Palmas de Monte Alto PMA2 2.96 (2.75—3.17) 63.3 [20.8]*

Pindaí PIN1 1.00 (1.00—1.00) 100.0 [0.0]

Pindaí PIN2 2.30 (2.14—2.45) 43.3 [0.0]

Pindaí PIN3 3.09 (2.88—3.30) 60.0 [33.3]*

Vitória da Conquista VCA1 1.00 (1.00—1.00) 100.0 [0.0]

Profenofos + cyper‑
methrin

West Luís Eduardo Magalhães LEM1 3.23 (3.05—3.41) 20.0 [37.5]*

Luís Eduardo Magalhães LEM2 2.57 (2.44—2.71) 16.7 [33.0]*

Southwest Bom Jesus da Lapa BJL1 2.34 (2.18—2.50) 43.3 [0.0]

Candiba CAN1 2.71 (2.56 – 2.84) 26.7 [66.7]*

Candiba CAN2 1.73 (1.62—1.85) 53.3 [8.3]

Guanambi GBI1 2.94 (2.73—3.15) 63.3 [20.8]*

Palmas de Monte High PMA1 1.63 (1.51—1.76) 73.3 [0.0]

Palmas de Monte High PMA2 2.93 (2.74—3.12) 43.3 [12.5]*

Pindaí PIN1 1.63 (1.51—1.76) 73.3 [0.0]

Pindaí PIN2 2.94 (2.74—3.14) 56.7 [20.8]*

Pindaí PIN3 2.38 (2.21—2.54) 50.0 [12.5]*

Vitória da Conquista VCA1 1.00 (1.00—1.00) 100.0 [0.0]

Fipronil West Luís Eduardo Magalhães LEM1 2.54 (2.40—2.68) 16.7 [8.3]*

Luís Eduardo Magalhães LEM2 2.54 (2.40—2.68) 16.7 [8.3]*

Southwest Bom Jesus da Lapa BJL1 1.73 (1.62—1.85) 53.3 [0.0]

Candiba CAN1 1.58 (1.46—1.71) 83.3 [0.0]

Candiba CAN2 1.00 (1.00—1.00) 100.0 [0.0]

Guanambi GBI1 1.00 (1.00—1.00) 100.0 [0.0]

Palmas de Monte Alto PMA1 1.58 (1.46—1.71) 83.3 [0.0]

Palmas de Monte Alto PMA2 1.68 (1.56—1.80) 63.3 [0.0]

Pindaí PIN1 1.00 (1.00—1.00) 100.0 [0.0]

Pindaí PIN2 1.55 (1.42—1.68) 90.0 [0.0]

Pindaí PIN3 1.00 (1.00—1.00) 100.0 [0.0]

Vitória da Conquista VCA1 1.00 (1.00—1.00) 100.0 [0.0]
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cotton cycle, thus requiring several sprayings with insec-
ticides, which may lead to the selection of resistant popu-
lations. The resistance phenomenon consists of a genetic 
change in response to the selection that can compromise 
the efficacy of insecticides, leading to control failure 
(Guedes 2017; Leite et al. 2020). For the boll weevil, there 
are currently 41 reported cases of resistance to insecti-
cides in cotton-producing regions in the United States of 
America, Mexico, Venezuela (Arthropod Resistance and 
Database  2022), and Brazil (Rolim et al. 2021).

Our results indicated high risk of control failure and 
low efficacy, the minimum expected threshold (80%) for 
malathion and mixture profenophos + cypermethrin 
against the studied boll weevil populations. The boll wee-
vil populations from the west mesoregion (LEM1 and 
LEM2) exhibited a high risk of control failure and low 
mortality for the three insecticides. Since this mesore-
gion encompasses the greatest commercial cotton culti-
vation area in the state of Bahia, with 300–320 thousand 

hectares cultivated, the intensive use of chemical control 
is common for pest population suppression with an aver-
age of 19 applications per harvest (Fundo para o Desen-
volvimento do Agronegócio do Algodão 2019).

The results obtained for malathion differ from those 
findings for the boll weevil populations in the state of 
Mato Grosso in 2016/2017, which were susceptible to 
this insecticide (Oliveira-Marra et  al.    2019). A similar 
study with boll weevil populations in 2016–2018 from 
the states of Pernambuco, Ceará, and Mato Grosso found 
a high efficacy of malathion and high resistance ratios for 
beta-cyfluthrin (Rolim et al. 2019).

More recently, the high toxicity of phenylpyrazoles 
(fipronil and ethiprole) insecticides was reported in 
the boll weevil (Torres et  al.  2022). The same study 
also found moderate risks of control failure for pro-
fenofos + cypermethrin and low risks for malathion. 
Organophosphate and pyrethroid insecticides are 
among the most used for pest control in agriculture 

Fig. 1 Survival curves for the insecticides assessed, regardless of the boll weevils (Anthonomus grandis grandis) population (A) exposed 
to malathion (B), profenophos + cypermethrin (C), and fipronil (D)
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(Yao et  al.  2020). Malathion, an organophosphate 
inhibitor of acetycholinesterase, is the insecticide 
most used against the boll weevil, while pyrethroids-
act on the sodium channel of the axon membrane 
(Costa 2015). Of the insecticides used, fipronil showed 
the greatest efficiency against the surveyed boll wee-
vil populations. This phenylpyrazole insecticide 
blocks the passage of chlorine ions in the pre- and 

post-synapse of the nerve cell membrane and in the 
gamma-aminobutyric acid channel (GABA) (Gant 
et al. 1998; Singh et al. 2021).

The ranges of rasitance ratios are not directly trans-
lated into (field) pest control failure (French-Constant 
and Roush 1990), but they tend to be related, particu-
larly if insecticide resistance is the prevalent cause of 
control failure. The resistance ratio estimates obtained 

Fig. 2 Relationship between the resistance ratio and control failure likelihood in boll weevil (Anthonomus grandis grandis) populations to malathion 
(A), profenophos + cypermethrin (B), fipronil (C)
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were relatively low, but the efficacy of these insecticides 
(especially malathion and profenophos + cypermethrin) 
is compromised for most of the boll weevil populations 
studied. Thus, low resistance levels can still lead to high 
risks of control failure, as observed here, which is use-
ful warning for the evolution of resistance and provid-
ing relevant information to guide the implementation 
of efficient pest management practices (Arthropod 
Resistance and Database 2022).

The high potential of damage caused by the boll wee-
vil requires an intensive system that includes the use 
of different pest control methods (Santos et  al.  2021). 
It is especially recommended the compulsory disposal 
of cultural remains respecting a specific time window 
for seeding (sanitary emptiness), pheromone traps for 
monitoring, and biological control practices, among 
other methods (Santos et al. 2021).

In summary, the resistance to insecticides is already 
one of the major challenges for the management of 
the boll weevil in cotton-producing regions of Bahia. 
Resistance levels are low but enough to compromise 
insecticide field efficacy and impose significant risk of 
future control failure. Thus, continued monitoring and 
increased use of resistance management practices are 
necessary for effectively controlling the boll weevil in 
the region.
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