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Abstract 

Background Fiber maturity is a key cotton quality property, and its variability in a sample impacts fiber process-
ing and dyeing performance. Currently, the maturity is determined by using established protocols in laboratories 
under a controlled environment. There is an increasing need to measure fiber maturity using low-cost (in general 
less than $20 000) and small portable systems. In this study, a laboratory feasibility was performed to assess the ability 
of the shortwave infrared hyperspectral imaging (SWIR HSI) technique for determining the conditioned fiber maturity, 
and as a comparison, a bench-top commercial and expensive (in general greater than $60 000) near infrared (NIR) 
instrument was used.

Results Although SWIR HSI and NIR represent different measurement technologies, consistent spectral characteris-
tics were observed between the two instruments when they were used to measure the maturity of the locule fiber 
samples in seed cotton and of the well-defined fiber samples, respectively. Partial least squares (PLS) models were 
established using different spectral preprocessing parameters to predict fiber maturity. The high prediction precision 
was observed by a lower root mean square error of prediction (RMSEP) (< 0.046), higher Rp

2 (> 0.518), and greater 
percentage (97.0%) of samples within the 95% agreement range in the entire NIR region (1 000∼2 500 nm) with-
out the moisture band at 1 940 nm.

Conclusion SWIR HSI has a good potential for assessing cotton fiber maturity in a laboratory environment.

Keywords Near infrared spectroscopy, Near infrared hyperspectral imaging, Fiber maturity, Seed cotton, Partial least 
squares regression

Introduction
Cotton has been grown in over 100 countries/regions 
primarily for its natural textile fiber (Mollaee et  al. 
2020). Cotton fiber starts from protodermal cells on the 
outer integument layer of cotton seeds. Fiber maturity, 
quantified by the degree of secondary cell wall thicken-
ing, is a key yield trait and also an essential fiber quality 
attribute. Maturity is linked directly to fiber breakage 
and entanglement (neps) during mechanical process-
ing, yarn processing and textile performance, and dye 
uptake in textile products (Anthony et al. 1988; Gordon 
2007; Kelly et al. 2015; Kim et al. 2019; Long et al. 2021). 
For example, recently Long et  al. (2021) related fiber 
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properties to the ring spun yarn performance on cotton 
from two consecutive seasons (the 2010/2011 season and 
the 2011/2012 season), and reported an 8.8% difference 
in fiber maturity and a 17.3% difference in yarn tenacity 
(cN·tex−1) between two seasons. Their fiber maturity on 
average was 0.76 from the 2010/2011 season and 0.83 
from the 2011/2012 season, and this difference impacted 
yarn tenacity with 15.37 cN·tex−1 from the 2010/2011 
season fibers and 12.92 cN·tex−1 from the 2011/2012 sea-
son fibers.

Fiber maturity is measured on cotton lint (i.e., cotton fiber 
after the ginning process has removed the cotton seeds) by 
the established procedures practiced in the cotton indus-
try. Current-in-use fiber maturity measurements include 
the referenced cross-sectional image analysis microscopy 
(IAM) (Guo et  al. 2014; Hequet et  al. 2006; Thibodeaux 
and Evans 1986; Xu and Pourdeyhimi 1994), advanced fiber 
information system (AFIS) (Bradow et al. 1996; Paudel et al. 
2013), and Cottonscope (ASTM 2021; Kim et al. 2020; Pau-
del et al. 2013; Rodgers et al. 2012, 2015). These measure-
ments are performed under tightly controlled laboratory 
environmental conditions of (21 ± 1)°C temperature and 
(65 ± 2)% relative humidity (RH).

To perform cotton fiber maturity measurements by the 
above methods, the cotton fiber attached to cotton seeds 
(or seed cotton) have to be harvested first in the field, 
then they are ginned at gin facilities prior to shipping the 
resultant fiber samples to a  fiber testing laboratory for 
routine analyses. Clearly, from cotton field harvesting to 
cotton ginning to laboratory test, fiber maturity deter-
mination is a lengthy and tedious process involving fiber 
shipment and conditioning that might take days to have 
fiber maturity available (Zumba et al. 2017), because fiber 
ginning (or production) facilities and laboratory quality 
test laboratories are not in close proximity. Hence, there 
is an increased interest in rapid and accurate analysis of 
cotton fiber maturity using low-cost (in general less than 
$20 000) and small portable systems. There have been a 
few works in this area; most have been led by research-
ers at the Agricultural Research Service (ARS) of the 
United States Department of Agriculture (USDA) (Rodg-
ers et al. 2010, 2017; Zumba et al. 2017). These investiga-
tors have explored the feasibility of using portable near 
infrared (NIR) instruments to measure fiber maturity 
in and outside the laboratory. The principle is based on 
diffused NIR spectral reflectance that occurs when NIR 
light interacts with fiber sample, and also on NIR spec-
tral intensities that originate from the overtones and 
combinations of fundamental group vibrations (i.e., C-H, 
O-H, C-O) in fiber cellulose (a major component in cot-
ton fiber). NIR method is an indirect method for fiber 
maturity, since it relies on IAM, AFIS, or Cottonscope 
maturity values for NIR applications. In these pioneer 

studies, Rodgers and colleagues mainly compared port-
able NIR devices to bench-top instruments using well-
defined and clean lint fibers, while consistently keeping 
a good contact between the sample and the NIR probe/
detector. Depending on availability of fiber maturity ref-
erence measurements over the years, they used fiber 
maturity references from Fineness and Maturity Tester 
(FMT) measurements in 2010 (Rodgers et  al. 2010) to 
cross-sectional IAM tests (Rodgers et al. 2017) and Cot-
tonscope tests in 2017 (Zumba et  al. 2017). In addition 
to lint fiber, they collected NIR spectra of individual 
clean and seed cotton bolls using portable NIR devices, 
prior to mixing the bolls for the fiber maturity reference 
measurement and to taking the NIR spectral average. In 
order to evaluate portable NIR performance, they pro-
posed several end-state criteria that included the number 
of outliers ≤ 30% (≥ 70% prediction method agreement 
between the reference method result and NIR-deter-
mined result). Their investigation showed the potential 
of predicting cotton fiber maturity within an agreement 
of ± 0.10 maturity units compared with other portable 
NIR measurements. It was found that the portable NIR 
instruments did not perform as well as bench-top NIR 
instruments in controlled condition and with consistent 
fiber contact.

Shortwave infrared hyperspectral imaging (SWIR HSI) 
technique has evolved as a non-destructive and rapid 
analytical tool for agricultural and food safety and quality 
inspection (Park and Lu 2015; Tao et  al. 2020), because 
it provides not only the spectral information of any pixel 
in an image but also the spatial information of an image 
at target wavelength. In the past 10 years, SWIR HSI has 
found promising applications in detecting cotton trash or 
non-lint components and in identifying different types 
of raw cotton (Al Ktash et al. 2020; Ni et al. 2020; Zhang 
et al. 2016, 2017). To our best knowledge, SWIR HSI has 
not been applied to the evaluation of cotton fiber matu-
rity, although there was a report of using multispectral 
sensors (or imaging) for cotton fiber micronaire property 
that reflects fiber maturity and fineness (Sui et al. 2008).

To address the need of applying SWIR HSI or similar 
sensing measurements to fiber maturity in fiber research 
and testing laboratories, this study compared the result 
of expensive NIR spectrometer on well-prepared and 
clean fibers to that of SWIR HSI system on locule fibers 
in seed cotton at a laboratory environment. Seed cot-
ton harvested by cotton mechanical harvesters contains 
approximately 7% (machine-picked) and 32.5% (machine-
stripped) foreign or non-lint materials (Hardin and Byler 
2013), and it is a challenge to perform NIR fiber maturity 
analysis on seed cotton directly when foreign matter at 
the surface of a sample is apparent, as exampled in Fig. 1 
(a). The main objective of this study was to compare 
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partial least squares (PLS) regression model performance 
for predicting fiber maturity from both optical NIR spec-
tra of lint samples and SWIR HSI spectra of locule fibers 
still attached to their seeds at a laboratory environment. 
Our rationale for comparing fiber maturity analysis 
between NIR instrument and SWIR HSI system is:

(1) Optical NIR models were developed from well-
defined fibers and their maturity values were determined 
following the cross-sectional IAM procedure. IAM 
maturity determination requires a bundle of fibers to be 
selected and combed, embedded in a medium, cut into 
thin sections, and mounted on a microscope slide, prior 
to acquiring and analyzing fiber cross-sectional images. 
Following  the image analysis with a piece of  dedicated 
software, it is possible to estimate the parameters includ-
ing the fiber secondary cell wall area (Aw, cross-sectional 
area minus lumen area) and the perimeter of the outside 
of the fiber (P2), and further to calculate fiber character-
istics such as the  circularity (θ = 4πAw /(P2)2), maturity 
ratio or maturity (M = θ/0.577) for each cross-sectional 
fiber as well as the average maturity and maturity distri-
bution in a sample. In general, IAM fiber maturity test is 
a tedious, labor intensive, and slow process, hence it is 
impractical for measuring a large number of fiber sam-
ples. For the NIR spectral collection, a consistent pres-
sure was applied to keep the fiber sample surface flat, and 
each NIR spectrum consisted of ~ 2 800 datapoints from 
1 000 to 2 500 nm.

(2) SWIR HSI models were created from locule fib-
ers in seed cotton and their respective fiber maturity 
values were acquired using the Cottonscope method. 
Unblended cotton lint is a mixture of locule fibers at dif-
ferent maturity levels, due to the  fiber-to-fiber maturity 
variation within locules in a single boll and also among 

bolls from differing plant position and differing field 
areas (Ayele et al. 2018; Turner et al. 2015). By focusing 
on fiber samples from individual locules in seed cotton, 
it is anticipated to have an accurate locule fiber maturity 
value and also to exclude the impact of non-lint materi-
als (exampled in Fig. 1 (a)) on SWIR HSI model efficiency 
at this stage. In the Cottonscope reference measurement, 
a fiber bundle was cut into snippets, then ~ 20 000 indi-
vidualized snippets were analyzed for the fiber maturity 
by using a  polarized microscopy. Comparison of IAM 
maturity to Cottonscope maturity indicated a good over-
all agreement between the two methods for the 104 well-
defined cottons (Paudel et al. 2013; Rodgers et al. 2012). 
Unlike the flat sample surface presented in the optical 
NIR measurement, locule fiber samples were in a fluffy 
state, presenting a rough surface during the SWIR HSI 
acquisition. A SWIR HSI spectrum includes 156 data-
points in the region of 1 000 to 2 500 nm, which is much 
less than that of the NIR spectrum discussed above.

Materials and methods
Well‑defined cotton fibers, IAM maturity reference 
measurement, and NIR spectral collection
One hundred and four sub-samples from a pool of well-
defined cotton fibers, known as the 104 reference mate-
rials collected by Texas Tech University for cotton fiber 
maturity measurements (Hequet et  al. 2006) were used. 
They were well homogenized and clean fibers represent-
ing two main cotton types (Upland and Pima), various 
growth locations (U.S. domestic and foreign countries), 
and a wide range of fiber maturity. Maturity values 
(MIAM) were obtained by the cross-sectional IAM pro-
tocol with the use of the FIAS software developed by 
XU Bugao (Hequet et al. 2006).

Fig. 1 a Example of seed cotton with the presence of non-lint materials such as broken hulls, branches, and leaf pieces that are entangled 
with locule fibers. b Selected single locule fiber sample with cotton seed attached still, but without non-lint material; a U.S. 25-cent coin (24.26 mm 
in diameter) was included to compare the shape and size of locule fiber sample
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NIR spectra in reflectance mode were acquired on 
a Foss XDS rapid content analyzer (Foss NIRSystems 
Inc., Laurel, Maryland, USA). Approximately 10.0  g of 
cotton fibers were pressed into a Foss coarse granular 
cell with internal dimensions of 3.8 cm wide X 15.2 cm 
long X 4.8 cm depth. Following the granular cell moving 
across the optical window and stopping at 8 locations, 
each spectral scan covered a large surface sampling area 
of approximately 36  cm2. To keep fiber surface flat for a 
good contact between the sample and the optical win-
dow during entire experiment, a 750  g of extra weight 
(~ 0.18 PSI, pound-force per square inch) was loaded on 
top of the fiber samples consistently. The background 
was recorded with the use of an internal ceramic refer-
ence tile prior to sample scan. The  log10(1/Reflectance) 
or  log10(1/R) readings were collected over the 400~2 
500 nm wavelength range at 0.5 nm interval and 32 scans 
at a laboratory environment. Three spectra were taken by 
sub-sampling different portions in a sample within 5 min 
and the mean spectrum was used for each sample.

Locule fibers in seed cotton
Ten commercial Upland seed cotton samples, from 8 
cultivars (Deltapine 1646 (DP1646), Dyna-Gro 3385 
(DG3385), Fiber Max 1830 (FM1830), Phytogen 350 
(PHY350), Phytogen 430 (PHY430), Phytogen 444 
(PH444), Stoneville 4848 (ST4848), and Stoneville 5471 
(ST5471)), were collected at modules in the field ran-
domly from 3 U.S. States (Mississippi, Missouri, and New 
Mexico) in the 2019 crop year. For each sample, 10 loc-
ules were randomly selected across a sample box contain-
ing more than 5 lbs of seed cotton, in which fibers were 
mingled together between locules as well as with non-
lint material (Fig. 1 (a)). Following the removal of visible 
trash portions manually, locule fiber samples, with cot-
ton seed presence and > 1.0 g in weight each (Fig. 1 (b)), 
were imaged first as detailed in the following paragraph. 
Before taking the images, all seed cotton locule fiber sam-
ples were conditioned for a minimum of 24 h at a labora-
tory environment and then scanned at this laboratory.

SWIR HSI collection, image processing, and ROI (Region 
of interest) spectra of locule fibers
Next, a line-scanning SWIR hyperspectral imaging sys-
tem in the spectral region of 1 000~2 500 nm was used 
(Tao et  al. 2020). It comprises an imaging spectrograph 
(Micro-Hyperspec® SWIR, Headwall Photonics Inc., Bol-
ton, Massachusetts, USA), a 16-bit mercury cadmium 
telluride (MCT) detector coupled with a 25-mm focal 
length lens, halogen illumination source, and a computer. 
The imaging system has a spectral resolution of 9.6 nm, 
and the camera has a resolution of 384 (spatial dimen-
sion) X 166 (spectral dimension) pixels.

Hyperspectral images were acquired in reflectance 
mode from both sides of a locule fiber sample in the 
fluffy state. Each image took 13 s to acquire and included 
two locule samples with an exposure time of 10 ms and 
a pixel size of 778 × 384, and each pixel has a dimension 
of 0.273 4 mm (x-axis) and 0.254 1 mm (y-axis). Prior to 
the collection of fiber images, white and dark reference 
images were taken to correct the influence of non-uni-
form light intensity distribution and dark current of the 
imaging system. The white reference image was acquired 
from a white reflectance reference standard and the dark 
reference image was collected by covering the camera 
lens completely with its opaque cap. The relative reflec-
tance (R) intensities of fiber samples were calculated 
from the equation: R = (Isample-Idark)/(Iwhite-Idark), in which 
Isample, Idark, and Iwhite represent the intensities from sam-
ple image, dark reference image, and white reference 
image, respectively (Tao et al. 2020). The sample moving 
speed of 19 mm·s−1 was calculated via the system control 
software.

To separate fiber pixels from background pixels in 
ENVI software (L3Harris Geospatial, Broomfield, Colo-
rado, USA), a wavelength with the highest reflectance 
at 1316.82  nm was selected to enhance the largest con-
trast between the sample and the background. A band 
thresholding process was utilized to create a binary mask 
of all pixels with reflectance values of at least 0.10 at the 
wavelength of 1 316.82 nm. Pixels within the masked area 
were used to create a unique region of interest (ROI) for 
each of the locule sample contained within an image. 
After averaging two ROI reflectance spectra obtained 
from two sides of the  individual sample, resultant mean 
reflectance spectra were converted to absorbance spectra 
for all samples before exporting them for analysis.

Locule fiber cottonscope maturity reference determination
After taking SWIR HSI scans, these locule fiber samples 
were measured for fiber maturity (MCS) by the Cotton-
scope (Cottonscope® Pty Ltd, Western Australia, Aus-
tralia) as described previously (Kim et al. 2020; Rodgers 
et  al. 2012, 2015). Standard manufacturer’s operational 
procedures were followed with the use of Cottonscope 
software version 2.08. All samples were conditioned for 
a minimum of 24 h prior to measurements and measured 
at standard conditions of (21 ± 1) °C temperature and 
(65 ± 2)% RH. Succeeding the removal of cotton seeds 
from each locule manually, remain fibers were cut into 
approximately 0.7 mm snippets using a dual-blade cutter. 
Then, a mass of 50.0 mg ± 0.3 mg of snippets was placed 
into the Cottonscope water bowl that contained 125  g 
of water solution with a surfactant, and snippets were 
individualized to begin the  measurement. Each Cotton-
scope measurement analyzes 20 000 snippets, and a total 
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of 3 measurements were taken for individual locule fiber 
samples before utilizing the average of 3 replicates for 
analysis. During the experiments, the USDA Agricultural 
Marketing Service (AMS) micronaire calibration cotton 
samples (GM-39 and DM-9) were used to check instru-
mental performance daily (Kim et al. 2020).

NIR MIAM and SWIR HSI MCS model development
Both NIR spectra and SWIR HSI spectra were imported 
into GRAMS IQ application in Grams/AI (Version 9.1, 
Thermo Fisher Scientific, Waltham, Massachusetts, USA) 
for separate PLS regression model development. Both 
NIR MIAM and SWIR HSI MCS values were determined 
on 104 reference materials and 100 locule fibers, respec-
tively, as described in previous paragraphs. On the order 
of the smallest to largest in MIAM value, 70 spectra (or 
samples) were selected for calibration equation devel-
opment and the remaining 34 spectra (every 3rd sample 
in the order) were used for model prediction. Similarly, 
from the smallest to largest in MCS value, 67 spectra 
were selected for calibration equation development and 
33 spectra were used for model validation. To optimize 
the accuracy of the prediction models, the spectra were 
subjected to different combinations of spectral pretreat-
ments (e.g., mean centering (MC), multiplicative scat-
ter correction (MSC), standard normal variate (SNV), 
and the first and second derivatives). Full (one-sample-
out rotation) cross-prediction method was used, and 

the number of optimal factors chosen for the regres-
sion equation generally corresponded to the minimum 
of the predicted residual error sum of squares (PRESS). 
The  model accuracy and efficiency were evaluated in 
the calibration and prediction set on the basis of coef-
ficient of determination (RC

2, RP
2), root mean square 

error of calibration (RMSEC) and prediction (RMSEP), 
as well as the number (or percentage) of samples being 
predicted accurately. A sample was considered to be pre-
dicted accurately if the difference between NIR predicted 
and referenced maturity value was within the 95% agree-
ment range of bias ± 1.96*RMSEP (Bland and Altman 
1986). The higher RP

2 (Chicco et al. 2021), lower RMSEP, 
and greater percentage of correctly predicted samples, 
the better and more robust the optical and imaging NIR 
systems response to fiber maturity. Both P-values at con-
fidence level of 95% and F-test were calculated using 
respective Regression and F-Test function under Data 
Analysis in Microsoft® Excel® for Office 365.

Results and discussion
MIAM prediction by NIR spectra
Figure  2 shows representative  log10(1/R) spectra (1 
000∼2 500  nm) of cotton fibers with different MIAM 
ranges. These spectra were obtained by averaging the 
spectra of consecutive MIAM values in the respective 
range of < 0.70, 0.70–0.80, 0.80–0.90, 0.90–1.00, and 
> 1.00. Spectra of cotton fibers with low MIAM value have 

Fig. 2 NIR  log10(1/R) spectra of cotton fibers with various MIAM values, by averaging the spectra of samples in respective MIAM range of < 0.70, 
0.70–0.80, 0.80–0.90, 0.90–1.00, and > 1.00, from bottom to top
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common NIR bands with those of fibers having high 
MIAM index, but there are overall intensity increases in 
entire spectral region with MIAM rising. Spectral inten-
sity variations suggest the capability of NIR technique to 
monitor changes in fiber maturity through quantitative 
multivariate data analysis. Notably, spectral difference 
between two mean spectra (representing MIAM = 0.90 
to 1.00 vs. MIAM > 1.00) is indiscernible, revealing insig-
nificant spectral intensity changes among high MIAM 
fibers due to less variation in cellulose amount, a major 
fiber composition. This pattern is consistent with Fig. 4 
that is from different cotton samples, different maturity 
measurements, and different NIR instruments. Various 
functional groups in fiber cellulose are responsible for 
characteristic bands in this region and their assignments 
are summarized in Table  1 (Burns and Ciurczak 2001). 
The weak bands in 1 150∼1 300  nm region are mainly 
from the second overtones of CH stretching modes in 
water-bonded and hydrogen-bonded cellulose, while 
their first overtones appear in 1 675∼1 860  nm region. 
Absorptions in 1 300∼1 400  nm region are assignable 
to combination bands of the CH vibrations mostly, and 
also include the extended wing as low as 1 125 nm from 
the neighboring broad and the intense band at 1 450 nm. 
These bands in the 1 400∼1 675 nm region are due to the 
overlap of the first overtones of the OH stretching modes 

in hydrogen bonded forms from both fiber cellulose and 
water or moisture adsorbed in fiber. The strong bands 
centered at 1 940 and 2 105  nm are most likely attrib-
uted to the combination of OH stretching and deforma-
tion mode from moisture in fiber and the combination 
of OH and CO stretching vibrations of water-bonded 
and hydrogen-bonded cellulose, respectively. Intense 
absorptions over 2 200 nm are primarily from combina-
tion bands in water-bonded and hydrogen-bonded cel-
lulose. Although the 1 940 nm band is the moisture band 
in cotton fiber, other absorption bands are a collective 
contribution of all chemical components in a sample, 
including fiber cellulose and moisture. Since moisture 
fluctuations may influence the NIR spectra, all samples 
were equilibrated in the laboratory for 24 h prior to all 
measurements.

Range and standard deviation (SD) of referenced MIAM 
values in calibration and prediction sets are summarized 
in Table  2. Within the goal to create a set of reference 
cotton for maturity measurement (Hequet et  al. 2006), 
variations of MIAM values in Table 2 could represent the 
variability of fiber maturity in commercial cotton bales 
and cotton breeding programs.

PLS models were developed from different combina-
tions of spectral pretreatments in the 1 000∼2 495  nm 
region by cutting moisture band (1 860∼2 010 nm), and 
the optimal result from the MC + MSC + FD spectral 
pretreatment is given in Table  2. This model produces 
an Rc

2 of 0.828 and Rp
2 of 0.739 as well as an RMSEC of 

0.041 and RMSEP of 0.044. A scatter plot of NIR pre-
dicted against measured MIAM in prediction set is given 
in Fig.  3A (P < 0.001). F-test results  showed a non  sta-
tistically  significant difference in the variances of pre-
dicted and measured MIAM index (P = 0.19). Meanwhile, 
Bland–Altman plot in Fig.  3B showed the visualization 
of individual samples in comparison with the 95% lim-
its of agreement between the predicted and referenced 
(or actual) MIAM property in the prediction set. The 95% 
agreement ranges are bias ± 1.96*RMSEP, in which the 

Table 1 NIR band assignment of cotton fibers (s = strong, w = 
weak)

Wavelength / nm Assignment

1 150∼1 300 (w) 2nd overtone of CH stretching modes

1 300∼1 400 (w) Combination bands of CH vibrations

1 400∼1 675 (s) 1st overtone of OH stretching modes

1 675∼1 860 (w) 1st overtone of CH stretching modes

1 940 (s) Combination of OH stretching and deformation 
modes

2 105 (s) Combination of OH and CO stretching vibrations

2 270 (s), 2 340 (s) Combination bands

Table 2 Statistics in calibration and prediction sets for MIAM or MCS property from NIR or SWIR HSI spectra

a Optimal models from spectral preprocessing with combinations of mean centering (MC), multiplicative scatter correction (MSC), and Savitzky-Golay (SG) first 
derivative (FD) function of thirteen points; For MIAM, 70 samples in calibration set and 34 samples in prediction set; For MCS, 67 samples in calibration set and 33 
samples in prediction set.
b Standard deviation (SD), root mean square error of calibration (RMSEC) and prediction (RMSEP).
c Number and percentage (%) of samples with the difference between predicted and referenced value within the 95% agreement range of bias ± 1.96*RMSEC (or 
RMSEP) in calibration and prediction set.

Maturity & 
optimal  factora

Calibration set Prediction set

Range SDb RC
2 RMSECb No./ %c Range SDb RP

2 RMSEPb No. / %c

MIAM, 5 0.570∼1.087 0.099 0.828 0.041 68 / 97.1 0.632∼1.030 0.085 0.739 0.044 33 / 97.1

MCS, 8 0.530∼0.970 0.076 0.835 0.036 66 / 98.5 0.650∼0.947 0.064 0.518 0.046 32 / 97.0
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bias is the difference between the averages of the pre-
dicted and referenced MIAM values while RMSEP is the 
root mean square error of the prediction. The number of 
outliers, i.e., the samples outside the agreement ranges, is 
1, indicating that around 97.0% ((34 − 1)/34*100%) of val-
idation samples are in agreements at α = 0.05. Similarly, 
the number of outliers in calibration samples is 3, mean-
ing an over 97.0% agreement.

MCS prediction by SWIR HSI spectra
As expected, SWIR HSI  log10(1/R) spectra (1 000∼2 
500  nm) of locule fibers with cotton seed presence in 
Fig. 4 resemble NIR  log10(1/R) spectra of cotton fibers 
in Fig. 2 well. Figure 4 shows characteristic cotton fiber 
NIR bands from 1 350 to 1 650 nm, 1 875 to 2 000 nm, 2 
020 to 2 200 nm, and 2 240 to 2 400 nm with absorption 
peaks at 1 485/1 560, 1 940, 2 105, and 2 275/2 345 nm. 

Fig. 3 A Comparative correlation between NIR predicted and referenced MIAM in prediction set (n = 34) from 1 000∼2 495 nm without the moisture 
1 940 nm band; (B) Bland-Altman plot of NIR predicted and referenced MIAM property

Fig. 4 SWIR HSI  log10(1/R) spectra of locule fibers with cotton seed presence in different MCS intervals, by averaging the spectra of neighboring MCS 
values in respective range of < 0.70, 0.70–0.80, 0.80–0.90, and > 0.90, from bottom to top
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However, the difference in baselines or baseline shift of 
two types of NIR spectra is distinctive between Fig.  2 
(< 0.10 at 1 100 nm) and Fig. 4 (> 0.20 at 1 100 nm). This 
shift was not unexpected, because optical NIR spec-
tra were acquired from a flat sample surface, whereas 
SWIR HSI spectra were collected from a fluffy fiber 
sample with a rough surface. Nevertheless, these NIR 
spectra reflect the diffused reflectance from fiber sam-
ples’ surface. Effect of the baseline shifts on spectral 
modeling power can be minimized significantly by try-
ing different several statistical analysis strategies, such 
as derivatives and MSC. Similarity of the NIR curve 
in Fig. 4 to those in Fig. 2 suggests that the SWIR HSI 
technique has an equivalent power detecting cotton 
fiber maturity as the NIR.

Compared with the range (0.570 to 1.087) and SD 
(0.099) within calibration samples for the 104 reference 
materials in Table  2, both the range (0.530 to 0.970) 
and SD (0.076) of calibration set for the 100 locule fiber 
samples in Table  2 decreased. For example, the  low-
end of range changes to 0.530 for the 100 locule fibers 
from 0.570 for the 104 reference materials, the high-end 
of range becomes 0.970 for the 100 locule fibers from 
1.087 for the 104 reference materials, and SD reduces 
to 0.076 for the 100 locule fibers from 0.099 for the 104 
reference materials. This is not surprising, since the 104 
reference samples were created subjectively to cover 
a large maturity range (Hequet et  al. 2006). For the 
104 reference materials, Paudel et  al. (2013) showed a 
dynamic MCS range of 0.47 to 1.11 as compared with the 

MIAM range of 0.57∼1.09, indicating a difference of 0.10 
(MIAM - MCS ) between the lowest MIAM and the lowest 
MCS and also of -0.02 (MIAM - MCS ) between the high-
est MIAM and the highest MCS. MCS on the 100 locule 
fiber samples were observed to be lower than MIAM on 
the 104 reference materials in Table 2, echoing the MCS 
and MIAM observation on the same 104 reference mate-
rials by Paudel et al. (2013). Even on partial (93) of this 
104 reference materials, Rodgers et al. (2012) reported a 
moderate R2 of 0.65 and a slight bias (standard deviation 
of differences (SDD) = 0.062) between MCS and MIAM, 
however, they did not specify the MCS or MIAM range. 
The authors (Rodgers et al. 2012) further ascribed these 
discrepancies to (i) sample inhomogeneities in natural 
cotton fiber and (ii) errors in MIAM determination (lim-
ited number of specimens, image detection bias, fiber 
bundle sectioning). These researchers also noted the 
lower MCS values for samples at higher MIAM values, 
due to errors in MIAM determination of immature versus 
dead fibers. Finally, they concluded a very good method 
agreement between Cottonscope and IAM method 
for fiber maturity. Despite of different fiber samples, 
the pattern of fiber MIAM frequency (%) on the 104 ref-
erence materials is similar to that of fiber MCS frequency 
(%) on 100 locule fiber samples (Fig.  5), implying that 
random selection of the 100 locule fiber samples from 
10 cotton cultivars in this study is appropriate.

To correlate SWIR HSI spectra with correspond-
ing MCS values, different combinations of ROI spectral 
pretreatments in the 1 001∼2 474  nm region without 

Fig. 5 Comparison of fiber maturity frequency (%) on the sample set of 104 reference materials  against 100 locule fiber samples (■). Curve 
was obtained for each sample set, after classifying the MIAM or MCS values into 20 bins (bin width, 0.05) and counting the frequency number of each 
bin
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the moisture 1 940  nm band (1 860∼2 010  nm) were 
attempted and the optimal result is inserted in Table 2.

for comparison. This model suggests an overall agree-
ment of ≥ 97.0% in 67 calibration and 33 prediction sam-
ples that are within the 95% agreement ranges, and also 
an RMSEC of 0.031 and RMSEP of 0.046. Figure 6 A and 
6B show a correlation plot between SWIR HSI predicted 
against actual MCS (P < 0.001) and a Bland–Altman plot in 
prediction set, respectively. Difference in the variances of 
predicted and measured MCS value was not statistically sig-
nificant (P = 0.30).

It is of interest to examine the MCS variation at a single 
locule level within a cultivar (or a sample). Table 3 sum-
marizes the MCS average, standard deviation (SD), and 
range on 10 samples, showing a variation of MCS average 
from 0.730 to 0.891 for 10 samples and a MCS range from 
0.530 to 0.970 at single locule level among 10 samples. 
As expected in Table 3, samples with similar MCS average 
could show different maturity ranges. For example, the 
pair of PHY350 vs. PHY444 revealed a similar MCS aver-
age of 0.831 vs. 0.828 but a different MCS range of 0.747 
to 0.893 and 0.684 to 0.970, respectively. MCS frequency 
in Fig.  7 suggested a clear difference between the two 
cultivars, with a maximum MCS frequency at MCS = 0.82 
and a narrow MCS interval for PHY350 cultivar and for 
PHY444, at MCS = 0.73 and a wide MCS interval. Compar-
atively, DP1646 dryland and PHY430 showed a common 
MCS mean (0.785 vs. 0.794) and MCS range (0.733 to 0.827 
vs. 0.733 to 0.833), and also a similar MCS frequency.

Data in Table 2 indicated consistent prediction abili-
ties in the aspect of RMSEP (0.044 from NIR optimal 
model and 0.046 from SWIR HSI model) and per-
centage of samples within the 95% agreement range 
(> 97.0% from NIR and SWIR HSI model) between opti-
cal NIR and SWIR HSI system, despite the facts that (1) 
different types of reference values were taken (MIAM vs. 
MCS), (2) different spectral datapoints or instrumental 
resolution were used (2 750 datapoints in optical NIR 
vs. 155 in SWIR HSI), and (3) different sampling meth-
ods were adopted (flat surface in optical NIR vs. fluffy 
fibers in SWIR HSI). On the other hand, a lower RP

2 
value (0.518) from SWIR HSI model than that (0.739) 
from NIR model might be due to a reduced SD value 

Fig. 6 A Comparative correlation between SWIR HSI predicted and measured MCS in prediction set (n = 33) from 1 001∼2 474 nm 
without the moisture 1 940 nm band. B Bland-Altman plot of SWIR HSI predicted and referenced MCS property

Table 3 Comparison of MCS avg ± SD and range on 10 seed 
cotton samples from cottonscope measurement

Location / cultivar Avg ± SD Range

Mississippi DP1646 0.850 ± 0.021 0.827∼0.893

ST4848 0.745 ± 0.083 0.530∼0.817

ST5471 0.862 ± 0.034 0.810∼0.915

Missouri DP1646 0.802 ± 0.027 0.753∼0.843

DP1646 dryland 0.785 ± 0.031 0.733∼0.827

PHY350 0.831 ± 0.047 0.747∼0.893

PHY430 0.794 ± 0.031 0.733∼0.833

New Mexico DG3385 0.730 ± 0.082 0.570∼0.833

FM1830 0.891 ± 0.043 0.800∼0.947

PHY444 0.828 ± 0.098 0.684∼0.970
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(0.085 in NIR models vs. 0.064 in SWIR HSI models). 
Like the 104 reference materials developed for fiber 
maturity measurement, more diverse cotton cultivars 
from different locations and crop years are necessary 
to validate the SWIR HSI method. Therefore, result 
reveals a potential of SWIR HSI instrument for rapid 
and accurate measurements of fiber maturity at a labo-
ratory environment, in which cotton samples were con-
ditioned to the same equilibrium of both temperature 
and RH prior to be imaged under this condition. Also, 
the surface status of seed cotton should be considered 
in future work.

Both fiber MIAM and MCS models were established 
on conditioned samples using the 1 000∼2 495  nm 
NIR region excluding the 1 860∼2 010  nm moisture 
absorptions, clearly this NIR region is the minimum of 
the moisture effect but impacted by water-bonded cel-
lulose. An earlier investigation (Vogt et  al. 2011) indi-
cated that exclusion of the 1 935 nm moisture band (or 
cutting out the 1 900∼2 000 nm region) had almost no 
impact on fiber micronaire (an indicator of fiber matu-
rity and fineness component) prediction. In a sepa-
rate study of 30 commercial cotton bales (Knowlton 
1996), result revealed the equilibrium moisture content 
(EMC) ranging from just under 6.7% to just over 7.2% 
by the oven-dry method, and also showed relatively low 
EMCs for high micronaire cotton at a controlled condi-
tion of 70 °F (or 21 °C) and 65% RH. Relative to a small 
change in EMC value from 6.7% to 7.2% (a change of 
7.5%), micronaire varied largely from 3.50 to 5.20 unit 
(a change of 48.6%). This reported data suggested a 
less change in moisture content within samples at con-
trolled environment.

Conclusion
Result of SWIR HSI system on fiber Cottonscope matu-
rity reference of locule fiber samples in seed cotton was 
compared with that of a bench-top NIR instrument on 
fiber IAM maturity reference of well-defined cotton 
fiber samples. NIR spectral consistence was observed 
between two different spectral measurements, with 
common NIR bands and shapes apparent. Despite the 
differences in maturity reference measurements, spec-
tral datapoints, and sampling methods between optical 
NIR and SWIR HSI techniques, satisfactory, consist-
ent and comparable prediction results were observed 
on conditioned samples, with RMSEP < 0.044 from 
NIR optimal model and < 0.046 from SWIR HSI mod-
els as well as the  percentage of correctly predicted 
samples > 97.0% at α = 0.05 from NIR and SWIR HSI 
models. These results indicated a potential of low-
cost SWIR HSI technique in estimating fiber maturity 
rapidly and non-destructively at a laboratory. Further 
research is needed to apply the method outside the 
laboratory and to transfer the models between sample 
types as well as between instruments.
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