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Abstract 

Background Water deficit is an important problem in agricultural production in arid regions. With the advent 
of wholly mechanized technology for cotton planting in Xinjiang, it is important to determine which planting mode 
could achieve high yield, fiber quality and water use efficiency (WUE). This study aimed to explore if chemical topping 
affected cotton yield, quality and water use in relation to row configuration and plant densities.

Results Experiments were carried out in Xinjiang China, in 2020 and 2021 with two topping method, manual top-
ping and chemical topping, two plant densities, low and high, and two row configurations, i.e., 76 cm equal rows 
and 10+66 cm  narrow-wide rows, which were commonly applied in matching harvest machine. Chemical topping 
increased seed cotton yield, but did not affect cotton fiber quality comparing to traditional manual topping. Under 
equal row spacing, the WUE in higher density was 62.4% higher than in the lower one. However, under narrow-wide 
row spacing, the WUE in lower density was 53.3% higher than in higher one (farmers’ practice). For machine-harvest 
cotton in Xinjiang, the optimal row configuration and plant density for chemical topping was narrow-wide rows 
with 15 plants  m-2 or equal rows with 18 plants  m-2.

Conclusion The plant density recommended in narrow-wide rows was less than farmers’ practice and the density 
in equal rows was moderate with local practice. Our results provide new knowledge on optimizing agronomic man-
agements of machine-harvested cotton for both high yield and water efficient.
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Introduction
The 89% of cotton in China is growing in Xinjiang, which 
covers 20% of the world total productions (https:// 
www. stats. gov. cn/ sj/ zxfb/ 202302/ t2023 0203_ 19016 89. 
htmln.d.). However, the development of cotton produc-
tion in Xinjiang is limited by factors such as insufficient 
irrigation water, low water use efficiency (Song et  al., 
2020), and shortage of labors (Meng et  al., 2021). Drip 
irrigation covered with plastic film (Li et  al., 2019) and 
mechanization of cotton production are widely used. The 
traditional cotton managements  in machine-harvested 
cotton lead to a poor defoliation and ripening percentage, 
and decrease fiber quality (Zhang et al., 2020).
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Optimizing row configuration, plant density, and 
chemical regulation is considered as the effective 
approaches to adapte machine-harvest cotton produc-
tion (Dai et al., 2017). The shift towards machine-harvest 
has led to changes in row configurations into two typical 
patterns: 76 cm equal row spacing, or narrow and wide 
row spacing of 10 cm plus 66 cm (narrow-wide row spac-
ing), which affects cotton growth and development, tran-
spiration, and  water use efficiency (Wang et  al., 2019; 
Enciso-Medina et al., 2002). Appropriate row configura-
tion, plant density, and chemical topping are important 
agronomy practices to improve cotton water use and 
yield (Luo et al., 2006; dos Santos et al., 2021). However, 
there is limited information if these agronomic measures 
and their interactions affect cotton transpiration and 
yield formation.

Optimizing plant population density and row con-
figuration is essential for regulating canopy structure 
and transpiration and coordinating high yield and water 
saving (Wang et  al., 2019). The increase of plant den-
sity causes a decline in boll weight, but increases boll 
numbers (Mao et  al., 2015). Appropriate plant den-
sity shapes a reasonable population structure, coordi-
nate the contradiction between cotton population  and 
individuals, and maximize the utilization efficiency of 
natural resources (Ren et  al., 2013). Comparing with 
narrow-wide row spacing, equal row spacing has a posi-
tive impact on air exchange, light transmittance, soil 
temperature, and light absorption (Zhang et  al., 2020). 
Row spacing indirectly affects crop water consumption 
and use efficiency by influencing soil hydrothermal con-
ditions (Zhang et al., 2020).

To accurately quantify crop transpiration, several 
methods are available for measuring crop transpira-
tion under field conditions, such as weighing lysimeters 
(Marek et al., 2006; Lascano et al., 2014), the Bowen ratio 
(Todd et  al., 2000; Irmak et  al., 2014), Eddy covariance 
(Baldocchi, 2003; Zhang et  al., 2014a, b; Wilson et  al., 
2001), and stem flow gauges (Dugas et  al., 1994; Las-
cano et al., 2016; Alarcon et al., 2000). Sap flow directly 
measures crop transpiration that can be used to deter-
mine plant water uptake continuously (Grime et  al., 
1995). Various thermometric methods, such as heat pulse 
(Cohen et al., 1993; Bleby et al., 2004), heat balance (Las-
cano et al., 2016), heat dissipation (Flo et al., 2019), and 
heat ratio method (HRM) (Burgess et al., 2001), are used 
to measure sap flow. The HRM stem flow instrument is 
ideal in field crops while plant stem is small (Chen et al., 
2022). The field measurements of transpiration in rela-
tions to row configuration, plant density, and chemical 
topping would provide insight understanding to explore 
the physiological and agronomic effects of new cotton 
cultivation technologies. We hypothesized that cotton 

yield and water use could be further improved by chemi-
cal topping due to the increase of plant transpiration and 
canopy growth, and it would be affected by the interac-
tion with row configuration and plant density.

The objectives of this study were (1) to quantify crop 
transpiration, growth, yield components, and fiber qual-
ity under chemical topping with varying row spacing 
and population densities, and (2) to optimize agronomic 
managements in drip-irrigated and plastic film-covered 
cotton designed for machine harvest.

Materials and methods
Experimental site
Field experiments were conducted in 2020 and 2021 at 
the Wulanwusu Agrometeorological Experiment Sta-
tion in Shihezi city, Xinjiang Uygur Autonomous Region, 
China, located at  44o17′  N and  85o49′  E. The average 
above 10 °C cumulative temperature of study site is 3 581 
°C from 1964 to 2021. During experimental years, the 
yearly mean air temperature was 23.4 °C, the total pre-
cipitation was 64.1 mm from sowing to harvest (Fig. 1). 
The soil texture was sandy loam, with 17 g·kg-1 of organic 
matter, 0.91 g·kg-1of total N, 91.5 mg·kg-1of available P 
and 315 mg·kg-1 of available K within 0–40 cm soil layer.

Layout of experiments
Field experiments comprised eight treatments, includ-
ing two row configurations (equal row spacing and nar-
row-wide row spacing), two plant densities (low, L and 
high, H), and two topping methods (manual topping and 
chemical topping). The treatments were tested for opti-
mizing the managements of machine harvest cotton. 
The equal row spacing consisted of 3 rows of cotton with 
76 cm row spacing in one piece of plastic film (2.05 m 
wide), while the narrow-wide row spacing consisted of 6 
rows of cotton with a 10 cm narrow row spacing and a 
66 cm wide row spacing (Fig. 2a, b). The plant densities 
were 18 (H) and 10 (L) plants·m-2 in equal rows, 25 (H) 
and 15 (L) plants·m-2 in narrow-wide rows, respectively. 
The high plant density treatments in both row configu-
rations were the  common  practices applied by farmers. 
Manual topping was cuting  out buds of main stem by 
hand to terminate further growth, and chemical topping 
was  conducted by appling a high concentration mepi-
quat chloride (225 g·ha–1) to restrict the growth. Topping 
treatments were conducted on 10 July 2020 and 11 July 
2021, respetively. For the chemical topping treatments, 
additional mepiquat chloride of 150 g·ha–1 was applied 
after 10 days to guarantee the topping effect.

The field experiments were arranged in a completely 
randomized block design, which was repeated three 
times. Plot area was 31.5  m2 (7 m×4.5 m). Cotton (Gos-
sypium hirsutum) cultivar was Xinluzao 78 in two years. 
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The sowing date was April 24 in 2020 and April 26 in 
2021,  respetively. The drip tube was  covered by plastic 
film. All practices, e.g., sowing, applying drip tube, and 
covering film were conducted by machine at one opera-
tion. The open bolls were harvested three times by hand, 
on 20 September, 1 October, 10 October in 2020 and 25 
September, 5 October, 20 October in 2021,  respetively. 
Six times irrigation in 2020 and seven times irrigation in 
2021 were given during cotton growing seasons with 480 

mm in both years. Fertilizer was applied along drip irri-
gation  with a total amount of 680 kg·ha-1, 270 kg·ha-1 P 
and 80 kg·ha-1  K in two years according to local agro-
nomic practices.

Measurements
For measuring aboveground dry matter, three plants were 
randomly sampled for each plot in five times in 2020 and 
six times in 2021 during cotton growing seasons. Leaves, 

Fig. 1 Weather data during the cotton growing seasons in 2020 and 2021 in Wulanwusu, Shihezi, China

Fig. 2 Row configurations of the field experiment (a, b) and the installation of sap flow meter (c, d)
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stems, and fruits were separately dried in the oven at 80 
°C for two days until reaching a constant weight.

For determining the maximum values of stem diam-
eter to calculate transpiration of one plant, the first 
internode of the main stem of three plants for each plot 
were measured on August 20 in 2020 and August 23 in 
2021, respetively.

For measuring seed cotton yield, all plants in an 4  m2 
sub-sampling area of each plot were harvested three 
times. The boll numbers of plants in the sub-sampling 
area were counted to calculate boll density (bolls·m-2). 
The number of open bolls was used to determine yield. 
Thirty open bolls were randomly sampled per plot to 
measure boll weight.

Cotton fiber was separated by a roller ginning machine. 
Fiber  quality of the samples of all plots were evaluated 
using a High Volume Instrument (HVI-900) according to 
ICC standard (United States Department of Agriculture, 
Agricultural Marketing Service (USDA-ARS), 2001).

Sap flow measurements
To quantify the cotton transpiration from flowering stage 
to boll opening stage, sap flow meter SFM1 (ICT Interna-
tional, Armidale, Australia) was used to measure the sap 
velocity from July 8 to August 30 in 2020 and July13 to 
August 30 in 2021, respetively. One plant was randomly 
selected from each treatment to install a SFM1.  The 
installation position of SFM1 was shown in Fig. 2 (c, d). 
The sap flow was continuously measured in a time inter-
val of 30 minutes from cotton flowering to harvesting 
times. Due to limited instruments, just two treatments 
(equal row spacing with high plant density, narrow-wide 
row spacing with low plant density) were measured in 
2021.

The instrument SFM1 measured the sap velocity using 
heat ratio method (Schoppach et al., 2021), which meas-
ures temperature change ratio of two thermistors (Bur-
gess et al., 2001). The thermal diffusivity of cotton stem 
for calculating the sap velocity of  plant stem (Vh, cm·h-1) 
was 0.002 5  cm2·s-1 (Marshall, 1958; Chen et al., 2022).

Plant transpiration  (cm3·h-1) was the production of sap 
area of one plant  (cm2) and sap velocity (cm·h-1). The sap 
velocity was the output of the instrument measurements 
and the  sap area of cotton plant was measured at field 
condition. Cotton hourly transpiration (mm·h-1) per unit 
ground area was the production of transpiration of one 
plant and plant density (plants·m-2) (Again et  al., 2012). 
The sap area was computed by measuring diameter (cm) 
of stem where SFM1 was installed (first internode). Daily 
transpiration (mm·d-1) was calculated by the plant tran-
sipiration within 24 hours, and the total transpiration 
during a cotton growing period (mm) was the sum of all 
daily transpirations (Chen et al., 2022).

Data analysis
To determine cotton growth under different agronomic 
practices, we used an expolinear equation (Goudriaan 
and Monteith, 1990; Zhang et  al., 2007) to fit growth 
dynamics at a daily base.

where Wt was the dry mass (g·m-2), rm  (d-1) was the rela-
tive growth rate at the initial stage. The tb (d) was the time 
when reaching the half of maximum absolute growth rate 
cm (g·m-2·d-1). The time t was days after sowing (DAS).

The water use efficiency (WUE) was obtained from a 
linear regression, the slope (g·m-2·mm-1) between dry 
matter and total transpiration  was calcualted from field 
observations in two years.

The normalized root means square error (NRMSE, 
%) was used to evaluate the accuracy of fitted biomass 
growth with observed dry matter measurements.

where Xi was the observed aboveground dry matter, 
Yi    was the curve fitted value, The Xi  is mean value of 
Xi . The i was each measurement and n was the number 
of measurements.

The growth equation for aboveground dry matter 
were fitted by exponential regressions in SPSS 26 (IBM, 
USA). Treatment effects on growth traits, yield, quality, 
WUE, and fitting parameters (cm,rm,tb) in two years were 
analyzed by using the General Linear Model in SPSS 26 
(IBM, USA). Row configuration, plant density, topping 
method, and year were set as fixed factors, including all 
interactions, while replicate was set as a random factor, 
nested with year (replicate(year)) (Zhang et al., 2014a, b; 
Zhang et al., 2019). The treatment means were compared 
using least significant difference method.

Results
Yields and yield components
Seed cotton yield was not significantly (P>0.05) affected 
by row spacing and plant density treatments (Table 1). 
Except for the treatment of manual topping under equal 
row spacing, the seed cotton yield under the lower plant 
density was slightly higher than that in the higher den-
sity (Table 2). The seed cotton yield in narrow-wide row 
spacing was slightly higher than  that in equal rows in 
2020, but opposite in 2021 (Table  2). Topping method 
and year extremely significantly  (P<0.01) affected 
seed cotton yield (Table  1). Across all years and row 

(1)Wt =
cm

rm
ln[1+ exp[rm(t − tb)]]

(2)
NRMSE =

1
n

n

1

(Xi − Yi)
2

Xi

× 100%
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configuration treatments, the seed cotton  yield under 
chemical topping was  12.2% higher  than that  under 
manual topping (P>0.05) (Table 2). There were no inter-
actions between row spacing, plant density and topping 
treatment  on seed cotton yield (P>0.05), but extreme 
significant effect between row spacing and year on seed 
cotton yield (P<0.01).

Row configuration, density, and topping treatments 
significantly  affected (P<0.05) boll density  (Table  1). 
Boll density was higher under chemical topping than 
that under manual topping (Table 2).

Boll weight was extremely significantly  affected 
(P<0.01) by row spacing and year, not by plant den-
sity and topping method. The interactions among row 
configuration, density, and topping method was not 
significant  (Table  1). Average boll weight across dif-
ferent treatments in equal row spacing was 4.6 g, 9.5% 
higher than in narrow-wide row spacing. In 2021, 
boll weight was 5.3 g, 51% higher than that in 2020 
(Table 2).

Fiber quality
Regarding fiber length, the topping treatments had a sig-
nificant effect (P<0.05), while other treatments had no 
effects  (Table  1). The average fiber length in chemical 
topping was 29.5 mm, which was 2.1% higher than that in 

manual topping. In 2021, average  fiber length was 29.5 
mm, 1.7 % higher than that in 2020 (Table 2).

Fiber strength was not significantly affected by 
main effects of topping method, row spacing, or plant 
density, however, the interactions  of row spac-
ing–plant density and row spacing–year were sig-
nificant  (P<0.05). The average strength across all 
treatments was 29.2 mm (Table 2).

Micronaire was significantly affected by row configura-
tion (P<0.05) and extremely significantly by year (P<0.01). 
Plant density and row configuration interaction signifi-
cantly  affected (P<0.05) fiber micronaire. Micronaire in 
equal rows  treatment was 4.57, which was 9.6% higher 
than that in the narrow-wide rows treatment (Table 2).

Plant traits
Stem diameter of first internode was extremely  sig-
nificantly  affected by plant density (P<0.01) and sig-
nificantly by  chemical topping (P<0.05) (Table  1; 
Fig.  3). Chemical topping  had a larger stem diameter 
of 8.92±0.22 mm, which was 2.3% larger than that of 
manual topping (8.72±0.20 mm). The stem diameter of 
low plant density was 8.91±0.21 mm, which was 2.2% 
larger than that of high plant density (8.72±0.19 mm). 
In 2021, the stem diameter was 9.45±0.21 mm, which 
was 14.5% larger than that in 2020 (8.25±0.12 mm).

Table 2 Yield components and quality parameters of cotton under different row configuration, plant density, and topping treatments 
in Shihezi, Xinjiang, China in 2020 and 2021

Same lower cases in each column indicate no significant difference between topping treatments within same year, row configurations, and plant density

Year Row spacing Plant density
Plants·m-2

Topping Boll weight Boll density seed cotton 
yield

Fiber length Fiber strength Micronaire

g Bolls·m-2 kg·ha-1 mm cN·tex-1

2020 Equal row 
spacing

18 Manual topping 3.72±0.20 a 126±24.2 a 4417±363 a 28.6±0.81 a 28.3±1.24 a 5.23±0.07 a

Chemical topping 3.28±0.11 a 146±26.0 a 4958±561 a 29.1±0.18 a 28.1±0.15 a 5.17±0.03 a

10 Manual topping 3.78±0.06 a 92.2±6.76 a 4291±273 b 28.3±0.27 a 28.0±0.53 a 4.93±0.27 a

Chemical topping 3.23±0.10 b 106±2.94 a 5708±341 a 29.4±0.46 a 29.6±0.50 a 4.87±0.07 a

Narrow-wide 
row spacing

25 Manual topping 3.56±0.38 a 175±25.5 a 5333±583 a 29.0±0.40 a 30.1±0.90 a 4.00±0.15 a

Chemical topping 3.38±0.40 a 228±24.2 a 5333±601 a 29.5±0.47 a 29.8±1.14 a 4.20±0.35 a

15 Manual topping 3.35±0.28 a 117±13.0 b 5375±573 a 28.9±0.58 a 28.3±1.13 a 4.63±0.33 a

Chemical topping 3.33±0.11 a 157±4.41 a 5750±382 a 28.9±0.64 a 28.4±0.68 a 4.80±0.32 a

2021 Equal row 
spacing

18 Manual topping 5.37±0.23 a 158±12.5 a 6792±253 a 29.3±0.68 a 29.5±0.88 a 4.37±0.18 a

Chemical topping 5.60±0.20 a 108±14.2 b 7375±505 a 29.8±0.18 a 29.8±0.42 a 3.83±0.03 b

10 Manual topping 5.57±0.12 a 123±2.64 a 6542±292 b 29.1±0.48 a 30.3±0.59 a 3.93±0.09 a

Chemical topping 5.73±0.03 a 132±1.98 b 7542±150 a 29.9±0.31 a 30.7±1.04 a 4.20±0.27 a

Narrow-wide 
row spacing

25 Manual topping 5.00±0.29 a 113±9.06 a 5583±588 a 29.3±0.35 a 28.6±0.41 a 3.80±0.23 a

Chemical topping 4.53±0.29 a 132±7.62 a 5833±273 a 29.6±0.21 a 28.9±0.36 a 3.90±0.00 a

15 Manual topping 5.03±0.22 a 118±7.36 a 5792±647 a 28.8±0.51 a 28.7±0.82 a 4.00±0.25 a

Chemical topping 5.17±0.15 a 143±16.0 a 7000±473 a 29.8±0.46 a 29.5±0.79 a 3.97±0.03 a
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Row spacing and plant density extremely significantly 
affected the maximal leaf area index (LAI), and there 
was extremely  significant interaction  effect between 
them  on the maximal leaf area index (Table  1). Nar-
row-wide row spacing had a maximal LAI of 3.90±0.24, 
which was 35.4% higher than that of equal row spac-
ing (2.88±0.19). High plant density had a maximal 
LAI of 4.23±0.26, which was 65.9% higher than that of 
low plant density (2.55±0.26). Chemical topping sig-
nificantly increased plant height by 13.2% comparing 
with manual topping. Plant height was lower in 2020 
(65.7±1.6 cm) comparing  with that in 2021 (82.5±1.5 
cm).

Growth dynamics
The growth course of cotton was fitted using an expo-
linear equation in 2020 and 2021. The R2 of fitted equa-
tions across all treatments and years was above 0.95, 

indicating that the model could describe the growth of 
cotton well (Table 3).

The fitted parameter rm showed extremely sig-
nificant difference in years (Table  4). The tb was 
extremely significantly  differed (P<0.01) between 
2020 and 2021 (Table 4), with a growth delay of 4 d in 
2020 (tb=64.4±0.4) comparing with  that in 2021 (tb= 
60.5±0.1). The cm was extremely significantly  affected 
by density and year (P<0.01). The cm was 47.1% and 
32.8% higher at high plant density comparing with that 
at low plant density in equal rows and narrow-wide 
rows, respectively (Table 3; Fig. 4).

Diurnal course of sap velocity
Chemical topping increased plant sap velocity by 8.7% 
comparing with the manual topping (Fig.  5). The sap 
velocity was 14.6 cm·h-1 in low plant density and 12.5 
cm·h-1 in high plant density under narrow-wide rows, 
and was 16.1 cm·h-1 in low plant density and 14.3 cm·h-1 
in high plant density in equal row spacing.

Fig. 3 Stem diameter at the first internode of cotton in different row configuration, plant density, and topping treatments in 2020 and 2021
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Transpiration and water use efficiency
The daily transpiration at flowering, flower and boll-
setting stage, and boll opening stages varied signifi-
cantly among treatments (Table  5). Across two years, 
daily cotton transpiration was 4.04 mm at flowering 
stage, 3.64 mm at flower and boll-setting stage and 
3.40 mm at boll opening stage in equal row spacing, 
while that was 5.33, 4.88, and 2.95 mm at three stages 
respectively in narrow-wide row. The daily transpira-
tion in narrow-wide row spaces with high plant den-
sity and chemical topping was the  highest (Table  5), 

and which was higher in 2021 comparing with that in 
2020. The total transpiration from flowering to har-
vest in equal row spacing with high density was much 
higher in 2021 comparing with that  in 2020 (Fig. 6).

In equal row spacing, WUE was 5.36±0.41 kg·m-3 in 
18 plants·m-2, 62.4% higher than  that in 10 plants·m-2 
(3.30±0.56 kg·m-3). However, WUE was 4.92±0.54 
kg·m-3 in narrow-wide row spacing with low plant den-
sity (15 plants·m-2), which was 53.2% higher than that 
in 25 plants·m-2 (3.21±0.46 kg·m-3) (Fig. 7).

Discussion
Chemical topping increased seed cotton yield, but did 
not affect cotton fiber quality. In equal rows, water use 
efficiency was 62.4% higher in high plant density compar-
ing with that in low plant density. While in narrow-wide 
row spacing, water use efficiency was 53.3% higher in 
low plant density comparing with that in high plant den-
sity. The water use efficiency was slightly higher in equal 
row spacing with high plant density  comparing  with 
that in narrow-wide row spacing with low plant density 
(P>0.05). Boll densities were significantly higher with 
narrow-wide row spacing under  high plant density and 
chemical topping than with equal row spacing under low 
plant density and manual topping. Boll weight was 9.5% 
higher in equal row spacing comparing with that in the 
narrow-wide row spacing.

Plant density increased WUE in equal row spacing by 
enhancing the  aboveground biomass but did not affect 

Table 3 Parameters of growth equation for aboveground dry matter in cotton under different row configuration, plant density, and 
topping treatments in 2020 and 2021

Lowe cases indicate no significant difference between plant density within same row configurations and topping treatments

Year Row configuration Topping Plant density cm rm tb NRMSE R 2

plants·m-2 g·m-2·d-1 d-1 d (%)

2020 Equal row spacing Manual topping 18 21.3±1.63 a 0.06±0.00 a 62.6±0.22 b 13.7 0.99

10 13.7±1.16 b 0.04±0.00 b 65.8±0.76 a 10.7 0.97

Chemical topping 18 22.1±1.33 a 0.05±0.01 a 63.5±0.58 a 5.90 0.97

10 15.8±1.14 b 0.05±0.01 a 63.7±1.02 a 12.4 0.98

Narrow-wide row spacing Manual topping 25 25.4±3.35 a 0.05±0.01 a 65.1±2.17 a 12.4 0.97

15 19.3±2.73 a 0.06±0.01 a 63.7±1.39 a 10.0 0.98

Chemical topping 25 21.6±1.37 a 0.04±0.00 a 66.3±0.84 a 15.2 0.96

15 18.9±1.67 a 0.05±0.01 a 64.2±1.23 a 21.0 0.96

2021 Equal row spacing Manual topping 18 28.2±1.25 a 0.06±0.00 a 60.6±0.17 a 10.5 0.98

10 20.4±1.17 b 0.08±0.01 a 60.2±0.54 a 9.14 0.97

Chemical topping 18 31.0±1.57 a 0.06±0.00 b 60.6±0.21 a 12.6 0.98

10 19.8±0.56 b 0.08±0.00 a 60.1±0.12 a 16.0 0.95

Narrow-wide row spacing Manual topping 25 29.0±0.84 a 0.06±0.01 a 60.7±0.31 a 9.88 0.98

15 20.0±0.85 b 0.07±0.01 a 60.8±0.57 a 11.1 0.98

Chemical topping 25 29.4±1.72 a 0.08±0.01 a 60.9±0.82 a 5.43 0.98

15 21.1±1.90 b 0.08±0.01 a 60.1±0.27 a 17.2 0.96

Table 4 The ANOVA analysis for the effects of row spacing, plant 
density, topping method on parameters of growth equation for 
aboveground dry matter.

The F value of each factors on parameter of the equation is given in the table. 
**indicates P<0.01 and *for P<0.05

Effect df cm rm tb

Year (Y) 1 46.8** 74.7** 221**

Replicate(Y) 4 0.84 0.58 0.32

Row spacing (RS) 1 3.63 0.05 1.60

Plant density (PD) 3 82.1** 1.83 0.22

Topping (TOP) 1 0.14 0.24 0.00

RS×PD 3 1.12 0.15 3.30

RS×TOP 1 1.46 0.00 0.50

TOP×PD 3 0.10 0.02 1.35

RS×TOP×PD×Y 3 0.69 1.99 1.39
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transpiration in cotton. Plant density determines light 
interception (Gwathmey et  al., 2010; Kaggwa-Asiimwe 
et al., 2013) by changing leaf area index and plant mor-
phylogical traits (Hussain et  al., 2000). Since radiation 
interception by leaves is the main determinant of the 
rate of transpiration, altering plant density may modify 
the demand of leaves for water.

Cotton has strong self-regulation ability, which allows 
it to adjust dry matter production and distribution  in 
responding to environmental factors (Mao et  al., 2018). 
Row spacing and plant distance can affect cotton dry 
matter production and sap flow by influencing com-
petition  among plants for natural resources and space 
(Dauzat et al., 2008; Zhu et al., 2014). High plant density 
results in smaller stem diameter, lower biomass, and less 
sap flow because of high intraspecific competition for 
natural resources (Ren et  al., 2013). However, the cot-
ton transpiration per unit ground area was calculated by 
transpiration per plant and plant density (Again et  al., 
2012), which may explain why there was no significant 

difference between  transpiration of high plant density 
and low plant density.

Chemical topping increases plant height, boll den-
sities, and fiber length. This topping  method leads 
to a compact plant architecture, which improves air 
exchange and light transmission in the cotton canopy, 
thereby reducing  the fruit abscission and the num-
ber of  rotten bolls, and increasing the distribution of 
assimilates to reproductive tissues (Dai et  al., 2022). 
Besides, compared with manual topping, the chemical 
topping increased the net returns due to the reduction 
of labors (Dai et  al., 2022). Daily and total transpira-
tion are higher in chemical topping may due to the 
higher LAI (Chen et  al., 2022). However, traditional 
field measurements, e.g., lysimeter, for determin-
ing water uptake have inherent uncertainties and sys-
tematic errors because of the  difficulty in determining 
transpiration and evaporation separately (Again et  al., 
2012; Colaizzi et al., 2014; Zhang et al., 2014a, b). The 
method used in this study measured sap flow directly 
for the cotton plant and showed great advantage. The 

Fig. 4 Fitted (lines) and observed (points) of aboveground dry matter in cotton under different row configuration, plant density, and topping 
treatments in 2020 and 2021
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Fig. 5 Diurnal courses of sap velocity in three sunny days at different development stages under different row configurations (equal row spacing, 
narrow-wide row spacing), plant densities and topping treatments in 2020 and 2021
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Table 5 Daily transpiration during flowering to boll opening stage in cotton under different row configurations, plant density, and 
topping treatments in 2020 and 2021

Year Row configuration Plant density
Plants·m-2

Topping Daily transpiration/mm

Flowering Flower and boll 
setting

Boll opening

2020 Equal row spacing 18 Manual topping 2.98±0.06 b 2.48±0.04 b 2.53±0.10 a

Chemical topping 3.83±0.11 a 3.34±0.07 a 2.33±0.31 a

10 Manual topping 2.54±0.09 b 2.17±0.04 b 1.81±0.09 b

Chemical topping 3.26±0.08 a 2.98±0.05 a 2.36±0.12 a

Narrow-wide row spacing 25 Manual topping 3.98±0.14 b 3.43±0.07 b 2.39±0.11 b

Chemical topping 5.41±0.13 a 4.67±0.08 a 4.11±0.20 a

15 Manual topping 3.12±0.09 b 2.73±0.04 b 2.41±0.12 b

Chemical topping 3.62±0.13 a 3.20±0.06 a 2.89±0.13 a

2021 Equal row spacing 18 Manual topping 5.74±0.30 a 5.36±0.17 a 5.86±0.22 a

Chemical topping 5.91±0.34 a 5.52±0.15 a 5.49±0.14 a

Narrow-wide row spacing 15 Manual topping 7.3±0.36 b 6.88±0.41 b

Chemical topping 8.54±0.43 a 8.38±0.51 a

Fig. 6 Total transpiration during flower and boll-setting stage in cotton under different row configurations, plant density, and topping treatments 
in 2020 and 2021
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accuracy of crop transpiration in this study is depended 
on the representativeness of plant individuals and the 
limitations of measuring plant numbers due to the cost. 
In this study, only one cotton plant per treatment was 
measured by HRM. To minimize the limitations in sap 
flow measurements, three plants per plot were meas-
ured for the  stem diameter and the  aboveground dry 
matter, which are used for calculating the transpiration 
per plant and per unit ground area (Chen et al., 2022). 
Besides, crop transpiration might be affected by other 
factors, such as variety and meteorological factors, 
which require further analysis of the mechanisms of 
plant transpiration.

Conclusions
For machine-harvest cotton in Xinjiang, the optimal 
planting mode could be narrow-wide rows spacing with 
lower plant density (15 plants·m-2), or equal rows with 

high plant density (18 plant  m-2) and applying chemi-
cal topping. Both modes achieved the highest seed 
cotton  yield, water use efficiency, and saved labors  by 
applying chemical topping. Our results suggest that 
the plant density in narrow-wide row spacing mode of 
farmers’ practice, which often grows under a high den-
sity (e.g., 25 plants·m–2), could be largely reduced when 
the chemical topping is applied instead of the manual 
topping. Our results provide a useful information for 
optimizing machine-harvest cotton managements and 
saving water by precisely knowing crop transpiration, 
growth, and yield formation in water deficient regions.
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