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Abstract 

Cotton has enormous economic potential, providing high-quality protein, oil, and fibre. But the comprehensive 
utilization of cottonseed is limited by the presence of pigment gland and its inclusion. Pigment gland is a common 
characteristic of Gossypium genus and its relatives, appearing as visible dark opaque dots in most tissues and organs 
of cotton plants. Secondary metabolites, such as gossypol, synthesized and stored in the cavities of pigment glands 
act as natural phytoalexins, but are toxic to humans and other monogastric animals. However, only a few cotton 
genes have been identified as being associated with pigment gland morphogenesis to date, and the developmental 
processes and regulatory mechanism involved in pigment gland formation remain largely unclear. Here, the research 
progress on the process of pigment gland morphogenesis and the genetic basis of cotton pigment glands is 
reviewed, for providing a theoretical basis for cultivating cotton with the ideal pigment gland trait.
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Background
Cotton belongs to the genus Gossypium in the family 
Malvaceae and is the leading natural fibre crop world-
wide (Huang et al., 2021; Wen et al., 2023). Cottonseed, 
treated as a by-product in cotton production, can be 
reprocessed into cottonseed oil, cotton meal, cotton-
seed husks, and cotton linters, etc., involving food, feed, 
chemical, pharmaceutical, and other fields (Sunilkumar 
et al., 2006; Rathore et al., 2020; Gao et al., 2022). Nowa-
days, nearly 90% of cottonseed is used to produce cook-
ing oil and animal feed, as it is an excellent source of 

high-quality protein and oil (Gao et al., 2022; Wen et al., 
2023). However, the gossypol deposited in cottonseed 
pigment glands must be chemically removed during this 
process due to its toxicity to humans and other monogas-
tric animals, which greatly increases the cost of cotton-
seed processing and further leads to a waste of resources 
(Tian et al., 2018; Rathore et al., 2020; Lin et al., 2023b).

Pigment glands are one of the major characteristics of 
Gossypium genus and its relatives, and are considered as 
protective structures formed during evolution (McMi-
chael, 1960; Lin et  al., 2023b). The pigment glands in 
cotton own a unique capacity to synthesize and store sec-
ondary metabolites (Gao et al., 2020; Huang et al., 2021). 
Its inclusions, including gossypol, hemigossypolone, heli-
ocides, and other terpenoids, contribute to the natural 
resistance to insects and pathogens, such as Helicoverpa 
armigera and Verticillium dahlia (Williams et  al., 2011; 
Tian et al., 2018; Lin et al., 2023a, 2023b). Therefore, the 
study of the morphogenesis and genetic mechanism of 
cotton pigment glands, the metabolic pathways of inclu-
sions such as gossypol, and their interrelationships have 

*Correspondence:
Zhu Shuijin
shjzhu@zju.edu.cn
Zhao Tianlun
tlzhao@zju.edu.cn
1 College of Agriculture and Biotechnology, Zhejiang University, 
Hangzhou 310058, China
2 Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, 
China
3 Institute of Hainan, Zhejiang University, Sanya,  Hainan 572025, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42397-024-00177-y&domain=pdf
http://orcid.org/0000-0001-8618-0206


Page 2 of 8Sun et al. Journal of Cotton Research            (2024) 7:14 

always been regarded as the research hot spots (Liu et al., 
2010; Lin et al., 2023a; Sun et al., 2023; Wen et al., 2023). 
The objective of this review is to summarize the mor-
phogenesis and genetic mechanism of cotton pigment 
glands, and to provide a theoretical basis for developing 
new cotton varieties that can take into account efficient 
cotton production and cottonseeds utilization.

Diversity of cotton pigment glands
Pigment glands, also known as “gossypol glands” because 
of  the deposited gossypol and its derivatives, are distrib-
uted in most tissues and organs of cotton plants, includ-
ing stems, leaves, seeds, petals, boll shells, etc. (Fryxell, 
1965; Gao et  al., 2020). In general, the pigment glands 
appear as visible dark opaque dots, but diverse colors 
appear in different tissues by microscopy (Fig.  1) (Ji, 
1980; Liu et al., 2010; Zhao et al., 2019). The distribution 
of pigment glands in cotton plants is also diverse, and is 
affected by genotypes, plant individuals, organ or tissue 
sites, growth environment, and developmental period 
(Mohan et  al., 1992).  Similarly, the diversity of pigment 
gland sizes has been revealed, which affected by geno-
types and organ or tissue sites. The pigment glands on 
boll shell typically have the largest size, while the com-
paratively smallest size is on the cottonseeds (Liu et  al., 
2017).

According to the morphology of pigment glands, cot-
ton can be roughly divided into four categories, namely 
glanded cotton, glandless cotton, cotton with glandless-
seeds but glanded-plant, and cotton whose seeds are 
glanded without gossypol. At present, almost all the main 
cotton  cultivars are glanded, including G. hirsutum and 
G. barbadense. The pigment glands of diverse sizes and 

densities appear in all parts of the glanded cotton plant 
except pollen and seed coat, among which cottonseeds 
have the highest density (Sunilkumar et  al., 2006; Zhao 
et al., 2019; Long et al., 2023). The second category, gland-
less cotton is characterized by the absence of pigment 
gland and gossypol in the whole plant and cottonseeds 
(Zhao et  al., 2019; Huang et  al., 2021). The first natural 
glandless mutant in upland cotton was discovered by 
McMichael (1959), and the majority of commercial ultra-
low gossypol germplasm lines belong to this category 
(McMichael, 1959). However, due to the low gossypol 
content in cotton plants, the resistance to diseases and 
insect pests is weakened, and the yield is reduced, which 
limits the use of this category in production (Rathore 
et  al., 2020; Zhang and Wedegaertner, 2021). The third 
category, the cotton with glanded-plant and glandless-
cottonseeds were found in several wild diploid Australian 
cotton species, as represented by G. bickii and G. australe 
(Fryxell, 1965; Cai et  al., 2020; Sheng et  al., 2023). The 
dormant cottonseeds of these cotton species are gland-
less and gossypol-free. After seed imbibition, the pigment 
glands are gradually presented and the plants are normal 
glanded (Sheng et al., 2023; Sun et al., 2023). This char-
acteristic of gradual formation of pigment glands during 
seed germination is also coined “delayed pigment gland 
morphogenesis” (Zhu et  al., 1999a; Zhu et  al., 2001). 
And the fourth category, the cotton whose cottonseeds 
have sparse pigment glands with undetectable gossypol, 
includes only two wild cotton species, G. stocksii and G. 
somalense (Xiang et  al., 1993). Akin to delayed pigment 
gland morphogenesis, masses of pigment glands develop 
and form with gossypols accumulated during seeds ger-
mination (Ding et  al., 2004). Therefore, it has also been 

Fig. 1 Morphological characteristics of pigment glands in different organs of glanded cotton. A, Petal; B, Bract; C, Sepal; D, Boll shell; E, Leaf; F, 
Stem; G, Cottonseed
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considered as an intermediate transition type between 
the glanded cotton and the delayed-pigment-gland-mor-
phogenesis cotton (Zhu et al., 1999a; Ding et al., 2004).

The cotton species with this unique trait of delayed 
pigment gland morphogenesis are of great breeding 
value in both cottonseed utilization and stress resist-
ance improvement. For this ideal trait, attempts have 
been made for the interspecific crossing between these 
delayed-pigment-gland-morphogenesis wild cotton spe-
cies and tetraploid cultivated cottons. Trispecies bridge 
crosses have been carried out for the triple allotetraploids 
(G. arboreum × G. bickii [2n = 52,  A2A2G1G1]) × G. hirsu-
tum, (G. arboreum × G. bickii [2n = 52,  A2A2G1G1]) × G. 
barbadense, (G. herbaceum × G. australe [2n = 52, 
 A1A1G2G2]) × G. hirsutum, and (G. thurberi × G. stur-
tianum [2n = 52,  D1D1C1C1]) × G. hirsutum (Zhang et al., 
1993; Zhu et al., 1995; Vroh Bi et al., 1999a, 1999b; Zhu 
et al., 1999b, 2004, 2005; Liu et al., 2015). Meanwhile, the 
synthetic hexaploid avenues have also been attempted 
through the amphidiploid (G. hirsutum × G. australe 
[2n = 78,  AADDG2G2]) or (G. hirsutum × G. bickii 
[2n = 78,  AADDG1G1]) consecutively backcrossing with 
upland cotton (Chen et al., 2014; Tang et al., 2018). How-
ever, due to the difficulty in interspecific introgression, 
this ideal trait has not been successfully transferred into 
cultivated cottons for commercial production.

Cotton pigment glands morphogenesis
Cotton pigment gland morphogenesis is a complex pro-
cess that remains elusive, and the study on the develop-
ment of  pigment glands started from  the last century 
(Stanford et al., 1918; McMichael, 1960). In general, the 
pigment glands are supposed to originate from clusters 
of meristem beneath the epidermis (Liu et al., 2010). And 
it is reported that mature pigment glands form a cav-
ity surrounded by radially flattened cells, in which the 
residual cell walls are still evident (Stanford et al., 1918; 
Yatsu et al., 1974). However, there have been two diverse 
views for  interpreting the morphogenesis of pigment 
glands, i.e., schizogenous process and lysigenous pro-
cess. According to Tschirch (1906) and Liu et al. (2010), 
the pigment gland cavities are formed through schiz-
ogenous process, in which special cells are separated 
and metabolites appear between these cells. Conversely, 
more research papers  supported the lysigenous process 
hypothesis, which is  a typical form of autophagic pro-
grammed cell death (Stanford et  al., 1918; Yatsu et  al., 
1974; Dangl, 2000; Liu et  al., 2010; Sun et  al., 2023). 
Cytology studies have shown that the initial gland pri-
mordium cells are constantly developing and differenti-
ating into central enlarged secretory cells and multiple 
layers parenchyma distributed around the cavity. Subse-
quently, cell walls of the internal cells begin to degrade, 

forming a cavity. And the autolysis of secretory cells by 
programmed cell death releases secretion products, 
including gossypol, into the cavity. Later, with the tangen-
tially elongation of pigment gland cells and the nternal 
cells completely broken down, the cavity of the pigment 
glands become more evident. Ultimately, the mature cot-
ton pigment glands consist of multiple layers of paren-
chyma, monolayer of secretory cells in the outer, and the 
residual of apoptotic cell in the inner cavity (Yatsu et al., 
1974; Liu et al., 2010; Sun et al., 2023).

The time point of cottonseed pigment gland morpho-
genesis is distinct in each category of cotton. Observa-
tion of  tissue structure of dormant mature cottonseeds, 
germinating cottonseeds, and embryos during anthe-
sis showed that pigment gland morphogenesis of most 
glanded cotton, such as upland cotton, occurs in embryos 
at approximately 18  days post-anthesis (Jan et  al., 2022; 
Sheng et  al., 2023). As for the  delayed-pigment-gland-
morphogenesis cotton, only clusters of initial cells distin-
guishable from other cells, called gland primordium cells, 
appear in the mature seeds, and pigment glands morpho-
genesis can be observed in germinating seeds (Zhu et al., 
1999a; Zhu et  al., 2001). For example, the dormant cot-
tonseeds of G. bickii are glandless with only partial gland 
primordium cells, and the pigment gland structures 
become visible in the cotyledons at approximately 36  h 
after seed imbibition (Sheng et al., 2023; Sun et al., 2023). 
As for G. stocksii, both the pigment gland cavities and 
the gland primordium similar to those in G. bickii can be 
observed in the mature seeds (Ding et al., 2004).

Genetic basis of cotton pigment glands
Genetically, pigment gland formation in cotton is com-
plex with numerous regulatory factors. Research on the 
basis of pigment gland formation in the cotton began 
following the discovery of the glandless mutants "Hopi 
Moencopi" since the 1950s (McMichael, 1954, 1959). The 
first recessive genetic locus, gl1, was identified as respon-
sible for the pigment gland formation on the stems, 
petioles, hypocotyl, and boll shells (McMichael, 1954). 
Subsequently, two relatively independent recessive genes, 
gl2 and gl3, were identified from the essentially gland-
less plants isolated from the cross of Hopi Moencopi 
and Acala (McMichael, 1960). Double recessiveness of 
these two loci (gl2gl2gl3gl3) led to a completely glandless 
phenotype in G. hirsutum, and the presence of the domi-
nant alleles (Gl2 or Gl3) led to the presence of pigment 
glands with the display of variable pigment gland dis-
tribution patterns according to genotypes (McMichael, 
1960; Miravalle, 1962; Lee, 1965). Besides these, three 
additional relatively weak alleles were also identified in 
upland cotton, among which gl4 and gl5 reduced only a 
tiny fraction of pigment glands, while gl6 had similar 
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but slighter effects to gl1 (Lee, 1962, 1965; Murray, 1965; 
Lusas et al., 1987).

In addition to the six independent loci mentioned 
above, breeding and genetic studies have also identi-
fied the multiple alleles with similar effects at major loci, 
namely gl2

arb in G. arboreum, gl3
thur in G. thurberi, gl3

dav 
in G. davidsonii, gl3

rai in G. raimondii, and gl2
b and gl3

b 
in G. barbadense (Bell et al., 1977). Genetic analysis indi-
cated that the glanded leaves and low gossypol content 
seed character of the mutant Xiang X9628 are controlled 
by two pairs of recessive duplicate genes, gl2 and the new 
multiple allele gl3

n (Zhang et al., 2001). And the delayed 
pigment gland morphogenesis trait of the new upland 
cotton germplasm, named ABH-0318, was controlled by 
the interaction of the genes located at two loci, gl3 from 
G. hirsutum and dominant multiple allele Gl2

b derived 
from G. bickii (Zhu et  al., 2001; Zhu et  al., 2004). In 
addition, a single dominant glandless allele of Gl2, Gl2

e, 
was discovered from the entirely glandless line Bahtim 
110 developed from the  progeny of G. barbadense Giza 
45 treated with radioactive phosphorous (32P), and it 
showed the epistatic effect on Gl3 (Afifi et al., 1966; Kohel 
et al., 1984).

Since then, these unique glandless germplasms have 
been used to breed many glandless cultivars of both G. 
hirsutum and G. barbadense, and to develop genetic pop-
ulations to map the genes responsible for pigment gland 
morphogenesis (Yu et  al., 2000; Cheng et  al., 2016; Ma 
et al., 2016; Zang et al., 2021). The gene underlying Gl2

e 
was the first identified gene through fine genetic mapping 
by cross populations, and was named Gossypium Pig-
ment Gland Formation (GoPGF), which encodes a basic 
helix-loop-helix domain-containing transcription factor 
(Cheng et al., 2016; Ma et al., 2016). Sequence alignments 
of glandless mutants showed that the amino acid change 
from alanine to valine at residue 43 resulted in the dom-
inant Gl2

e, whereas the single T or A was inserted into 
GhPGF_A12 (GoPGF genes in the chr. A12, Gl2) or 
GhPGF_D12 (GoPGF genes in the chr. D12, Gl3) intro-
duced premature translation termination, resulting in the 
recessive gl2 and gl3 alleles (Ma et al., 2016). The signifi-
cant role of GoPGF in the  pigment gland morphogene-
sis has also been further confirmed and low expression 
level  of this gene by silencing or knockout resulted in 
the completely glandless phenotype in cotton (Ma et al., 
2016; Janga et al., 2019; Li et al., 2021).

Three cotton gland formation (CGF) genes, CGF1, 
CGF2, and CGF3 (synonym of GoPGF)  were identified 
by comparative transcriptome analysis on glandless near-
isogenic cotton lines, of which CGF1 encoded a bHLH 
transcription factor had a dramatic effect on the pigment 
gland density and CGF2 encoded a NAC transcription 
factor impacted on gland density and terpenoids in the 

leaves of mutants (Janga et al., 2019). Moreover, another 
newly identified gland-associated gene, GauGRAS1 in 
G. australe, was confirmed to be responsible for stem 
pigment gland formation, and the homologous gene in 
G. hirsutum, named Gossypium Stem Pigment Gland 
Forming Gene (GoSPGF, gl1), has also been identified 
by genetic mapping (Cai et  al., 2020; Zang et  al., 2021). 
Recently, single-cell transcriptomic analysis has been 
used to reveal the gene regulatory network in pigment 
gland morphogenesis and has released some novel tran-
scription factor, for instance, GbiERF114, GbiZAT11, and 
GbiNTL9 in G. bickii, and GhJUB1  (synonym of CGF2) 
in G. hirsutum (Long et al., 2023; Sun et al., 2023; Zhang 
et al., 2023). To date, the identified regulators of pigment 
gland formation are all transcription factors, consisting 
of the core GoPGF and the genes regulated or affected by 
it (Table 1, Fig. 2) (Ma et al., 2016; Janga et al., 2019; Cai 
et al., 2020; Gao et al., 2020; Wang et al., 2021; Yi et al., 
2022; Zang et al., 2021; Sun et al., 2023; Wen et al., 2023).

The inclusions of cotton pigment gland cavities
The pigment gland cavities of cotton accumulate a large 
number of secondary metabolites that can protect plants 
against pathogens, insects, and herbivores. Beside the 
common non-volatile terpenoids such as gossypol, heli-
ocides H1 to H4, and hemigossypolone, cotton plants 
also release a complex blend of volatile terpenes stored 
in pigment glands, including α-pinene, (E)-β-ocimene, 
myrcene, and (E)-β-caryophyllene (Opitz et  al., 2008; 
Lin et al., 2023a). All these terpenoids in cotton pigment 
gland are biosynthetically related, and there are several 
regulators governing terpenoid biosynthesis (Lin et  al., 
2023a; Zhang et  al., 2023). CDN (( +)-δ-cadinene syn-
thase), CYB706B1, DH1 (short-chain alcohol dehydro-
genase 1), CYP82D113, CYP71BE79, SPG (specialized 
glyoxalase I), CYP736A196, 2-ODD-1 (2-oxoglutarate/
Fe (II)-dependent dioxygenase 1), and GhDIR4/5/6 were 
identified as enzymes of gossypol biosynthesis (Tian 
et  al., 2018; Lin et  al., 2023b). GaWRKY1 has been iso-
lated from G. arboreum and identified to participate in 
the  regulation of sesquiterpene biosynthesis in cotton 
which affects the expression of key synthase gene CAD-1 
(Xu et al., 2004). Moreover, comparative transcriptomes 
of several glanded and glandless cultivars identified a 
MYB transcription factor, named Cotton Gland Pigmen-
tation 1 (CGP1), as a regulator of sesquiterpene phyto-
alexin biosynthesis, which controlled by interacting with 
GoPGF to form a heterodimer in the nucleus (Gao et al., 
2020). The recent study of G. bickii has shown that Gbi-
CYP76B6, regulated by GoPGF, affects the sesquiterpene 
biosynthesis in cotton (Sheng et  al., 2023). And single-
cell transcriptomic analysis of cotton leaves revealed 
two novel genes, GoHSFA4a and GoNAC42, operating 
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downstream of GoPGF, which can regulate biosynthe-
sis of volatile terpenes and non-volatile terpenoids (Lin 
et al., 2023a).

Among them, gossypol is the most primary ingredient 
stored in the cavities of pigment glands, which  is used 

as a symbol of inclusions for the controversial relation-
ship with pigment glands. According to the physiologi-
cal and biochemical phenotypes observed in glanded 
cotton, gossypol content was highly correlated with the 
density of pigment glands. Usually, the size and density of 

Table 1 The research progress in pigment gland genes

Gene Source species Gene clone Encode TF Function in pigment gland References

gl1 (GoSPGF) G. hirsutum Yes GRAS Responsible for the glandless phenotype 
on the stems, petioles, hypocotyl and boll 
shells

McMichael, 1954

gl2, gl3 G. hirsutum Yes bHLH Responsible for the completely glandless 
phenotype in all parts of cotton

McMichael, 1960

gl4 G. hirsutum No - Weak alleles, reducing pigment glands in all 
parts of cotton

Lee, 1962

gl5 G. hirsutum No - Weak alleles, reducing pigment glands in all 
parts of cotton

Lee, 1962

gl6 G. hirsutum No - Similar but slighter effects to gl1 Murray, 1965

gl2
arb G. arboreum No - The multiple allele of gl2 with similar func-

tion in G. arboreum
Bell et al, 1977

gl3
thur G. thurberi No - The multiple allele of gl3 with similar func-

tion in G. thurberi
Bell et al., 1977

gl3
dav G. davidsonii No - The multiple allele of gl3 with similar func-

tion in G. davidsonii
Bell et al., 1977

gl3
rai G. raimondii No - The multiple allele of gl3 with similar func-

tion in G. raimondii
Bell et al., 1977

gl2
b, gl3

b G. barbadense No - The multiple allele of gl2 and gl3 with similar 
function in G. barbadense

Bell et al., 1977

gl3
n G. hirsutum No - Responsible for the character of glanded 

plants and glandless cottonseeds
Zhang et al., 2001

Gl2
b G. bickii No - Responsible for the delayed pigment gland 

morphogenesis trait
Zhu et al., 2004

Gl2
e (GoPGF) G. barbadense Yes bHLH Dominant glandless allele, responsible 

for the completely glandless phenotype 
in all parts of cotton. CRISPR/Cas9-medi-
ated knockout of GoPGF genes resulted 
in the completely glandless phenotype 
in cotton. Silencing GoPGF using a seed-
specific promoter led to a glandless phe-
notype with an ultra-low gossypol content 
in the cottonseeds

Afifi et al., 1966; Ma et al., 2016; Gao 
et al., 2022

CGF1 G. hirsutum Yes bHLH Reducing the number of pigment glands 
in all parts of cotton

Janga et al., 2019

CGF2 (GhJUB1) G. hirsutum Yes NAC Reducing the gland density in all parts 
of cotton. CRISPR/Cas9-mediated knockout 
of CGF2 genes reduces gland density 
and terpenoids in the leaves of mutants

Janga et al., 2019; Long et al., 2023

CGF3 G. hirsutum Yes bHLH Synonym of GoPGF, responsible 
for the completely glandless phenotype. 
CRISPR/Cas9-mediated knockout of CGF3 
genes results in glandless phenotype

Janga et al., 2019

GauGRAS1 G. australe Yes GRAS Homologous gene of GoSPGF, responsible 
for stem pigment gland formation

Cai et al., 2020

GbiERF114 G. bickii Yes AP2/ERF Affecting pigment gland formation 
and reducing the pigment gland density

Sun et al., 2023

GbiZAT11 G. bickii Yes C2H2 Affecting pigment gland formation 
and reducing the pigment gland density

Sun et al., 2023

GbiNTL9 G. bickii Yes NAC Affecting pigment gland formation 
and reducing the pigment gland density

Sun et al., 2023
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pigment glands are often used as the indicators to weigh 
the gossypol content in cotton breeding (Singh et  al., 
1972; Wilson et  al., 1976). However, there are excep-
tions in some wild cotton species, namely G. stocksii and 
G. somalense,  whose cottonseeds have sparse pigment 
glands with gossypol undetectable(Xiang et  al., 1993). 
Furthermore, several studies have shown that regulatory 
genes of pigment gland formation were also able to sig-
nificantly affect gossypol accumulation, while blocking 
gossypol biosynthesis by gene silencing or knockout had 
less effect on pigment gland formation (Sunilkumar et al., 
2006; Ma et al., 2016; Janga et al., 2019; Cai et al., 2020). 
Interestingly, this complex relationship can be explained 
by recent investigations of pigment gland cell in cotton 
leaves. Through single-cell transcriptome analysis, it 
was  confirmed that the  terpenoid synthetic genes were 
specifically and highly expressed in pigment gland cells, 
which further revealed that pigment glands were the syn-
thetic sites of terpenoids rather than just the storage sites 
of gossypol produced by the pigment-gland-independ-
ent pathway in roots (Long et al., 2023; Sun et al., 2023; 
Zhang et al., 2023). Thus, terpenoids synthesis is one of 
the unique functions of pigment gland cells, but the ter-
penoids content in cavities is also affected by transported 
substances synthesized in cotton roots (Zhao et al., 2020; 
Zhang et al., 2023).

Future perspectives
With the advancement of high-throughput sequenc-
ing technology and gene editing technology, especially 
the quick growth of single-cell sequencing technology 
in recent years, more and more regulators linked to pig-
ment gland formation will be discovered and identified, 

which will help to elucidate the molecular mechanism of 
pigment gland formation (Lin et  al., 2023a; Long et  al., 
2023; Sun et  al., 2023). On this basis, genetic engineer-
ing methods are used to further generate cotton varieties 
with diverse pigment gland types required for production 
despite the drawbacks of traditional breeding, such as the 
long cycle and hardship in breaking the negative chain 
(Khan et al., 2023). Currently, there are several objectives 
for cotton pigment gland breeding, and the majority of 
research focuses on using molecular cloning and genetic 
engineering techniques to produce glandless cotton, so 
that cottonseeds can be directly consumed (Sunilkumar 
et al., 2006; Li et al., 2021; Zhang et al., 2021; Gao et al., 
2022). Or contrarily, cultivation of cotton with high den-
sity or large size of pigment glands with high content of 
effective inclusions can enhance the resistance of cotton 
plants to diseases, insect pests, and pathogens, thereby 
increasing the cotton yield (Lin et al., 2023b). The long-
term goal of future research should be to reveal the 
mechanisms underlying the pigment glands morphogen-
esis and inclusions biosynthesis and storage, to develop 
novel cotton varieties that account for efficient cotton 
production and cottonseeds utilization. Breeding strat-
egies such as genetic engineering are bound to advance 
the breeding process of cotton pigment glands and pro-
mote the sustainable development of the cotton industry.

Conclusions
Pigment glands are one of the most crucial traits in cot-
ton breeding, and extensive research has been conducted 
on the morphological differences, morphogenesis, dis-
tribution, and genetic mechanism of pigment glands. Up 
to now, several genes regulating development of pigment 

Fig. 2 Regulation of pigment gland morphogenesis. GoPGF protein, as a master regulator, controls the presence or absence of pigment glands. 
Other transcription factors are responsible for various aspects of pigment gland morphogenesis. Different colors represent different types 
of transcription factors. Abbreviations: GoPGF, Gossypium Pigment Gland Formation; GoSPGF, Gossypium Stem Pigment Gland Forming; CGF2, 
cotton gland formation 2; GbiNTL9, Gossypium bickii NAC TRANSCRIPTION FACTOR-LIKE 9; GbiERF114, Gossypium bickii ETHYLENE RESPONSE FACTOR 
114; GbiZAT11, Gossypium bickii ZINC FINGER OF ARABIDOPSIS THALIANA 11; CGF1, cotton gland formation 1
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glands and accumulation of gland inclusions have been 
identified, such as GoPGF, CGF1, and CGF2, among 
which GoPGF is the most critical one for development of 
pigment glands. Thus, it would be a step further strategy 
to identify the potential transcriptional regulatory mech-
anisms of pigment glands using technology with rapidly 
developing, and to breed ideal cotton varieties that take 
into account efficient cotton production and cottonseeds 
utilization by genetic engineering.
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