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Abstract 

Background  Understanding the mechanism of male sterility is crucial for producing hybrid seeds and developing 
sterile germplasm resources. However, only a few cytoplasmic male sterility (CMS) lines of cotton have been produced 
due to several challenges, like inadequate variation of agronomic traits, incomplete sterility, weak resilience of restorer 
lines, and difficulty in combining strong dominance. Therefore, the morphological and cytological identification 
of CMS in cotton will facilitate hybrid breeding.

Results  Two F2 segregating populations of cotton were constructed from cytoplasmic male sterile lines (HaA 
and 01A, maternal) and restorer lines (HaR and 26R, paternal). Genetic analysis of these populations revealed a segre-
gation ratio of 3:1 for fertile to sterile plants. Phenotypic analysis indicated no significant differences in traits of flower 
bud development between sterile and fertile plants. However, sterile plants exhibited smaller floral organs, shortened 
filament lengths, and anther atrophy on the flowering day in comparison with the fertile plants. When performed 
scanning electron microscopy (SEM), the two F2 populations revealed morphological variations in the anther epider-
mis. Cellular analysis showed no significant differences in pollen development before pollen maturation. Interestingly, 
between the pollen maturation and flowering stages, the tapetum layer of sterile plants degenerated prematurely, 
resulting in abnormal pollen grains and gradual pollen degradation.

Conclusion  The results of this study suggest that fertility-restoring genes are controlled by a single dominant gene. 
Sterile plants exhibit distinctive floral morphology, which is characterized by stamen atrophy and abnormal anthers. 
Pollen abortion occurs between pollen maturity and flowering, indicating that premature tapetum degradation may 
be the primary cause of pollen abortion. Overall, our study provides a theoretical basis for utilizing CMS in hybrid 
breeding and in-depth investigation of the dominant configuration of cotton hybrid combinations, mechanisms of 
sterility, and the role of sterile and restorer genes.
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Background
Heterosis, also known as hybrid vigor, refers to the phe-
nomenon where the offspring of hybrid varieties of a 
species or across different species exhibit enhanced 
traits such as greater biomass, accelerated developmen-
tal rates, and higher fertility than their parent plants 
(Birchler et al. 2010; Groszmann et al. 2013). Production 
of hybrid seeds is a crucial step for heterosis utilization, 
which requires minimizing self-pollination and promot-
ing crossbreeding between parent plants through com-
monly used techniques, such as artificial and chemical 
emasculation as well as male sterility (Kempe et al. 2011; 
Colombo et  al.  2017; Yahaya et  al.  2020; Zhang 
et al. 2023).

Male sterility has been first observed by the German 
botanist Joseph Gottlieb Kölreuter in 1973 (Mayr  1986; 
Zhang et al. 2021). Plant male sterility refers to the inabil-
ity to produce dehiscent anthers, functional pollen, and 
viable male gametes, whereas female fertility remains 
unaffected (Shikanai et  al.  1988; Chen et  al.  2014; Fari-
nati et al. 2023). Male sterility can be classified into three 
categories based on the causes: cytoplasmic male steril-
ity (CMS) which is caused  by the  interaction between 
mitochondrial and nuclear genes, genic male sterility 
(GMS)  which is regulated by nuclear genes alone, and 
environment-sensitive GMS (EGMS) which is attributed 
to the interactions  between nuclear genes and environ-
mental factors, including photoperiod-sensitive GMS 
(PGMS), temperature-sensitive GMS (TGMS), and pho-
toperiod and temperature-sensitive GMS (PTGMS) 
(Vedel et al. 1994; Chen et al. 2014; Sun et al. 2022; Rana-
ware et al. 2023).

Cotton, a member of the Gossypium genus of the Mal-
vaceae family exhibits heterosis  in hybrids, which  often 
exceeding the control cultivars in yield by up to 5%–15% 
(Shahzad et al. 2020; Chen et al. 2022; Zhang et al. 2023). 
The cotton genus contains approximately 46 diploid spe-
cies (2n = 2x = 26), including Gossypium herbaceum, 
G. arboreum, etc., and seven allotetraploid species 
(2n = 4x = 52), including G. hirsutum, G. barbadense, etc. 
(Zhang et al. 2020; Kushanov et al. 2021; Lima et al. 2021; 
Jan et  al.  2022). Cotton CMS lines are found in various 
species like G. harknessii, G. trilobum, G. hirsutum, G. 
barbadense, G. arboreum, G. bickii, G. anomalum, and 
other species (Suzuki et al. 2013; Han et al. 2017; Hamid 
et al. 2020; Zhao et al. 2020; Li et al. 2022). Among these, 
certain CMS materials exhibit stable sterile character 

with  broad applications, including G. harknessii (CMS-
D2), G. trilobum (CMS-D8), G. hirsutum (CMS-(AD)1), 
and G. barbadense (CMS-(AD)2) (Han et  al.  2017; Li 
et al. 2022). The sterile cytoplasm of G. harknessii is the 
primary cytoplasm source in the “three-line system” (the 
sterile line, restorer line, and maintainer line)  hybrid 
breeding  in cotton, leading to the creation of superior 
varieties, facilitating cotton improvement, and Chinese 
CMS cotton cultivars are utilized in research and breed-
ing application  globally (Nie et  al.  2020; Li et  al.  2023). 
However, the negative effects of cytoplasmic sterility 
on anther development and yield-related traits impose 
limitations in cotton breeding (Zhang et al. 2019; Zhang 
et al. 2022; Zuo et al. 2022).

The cotton flower is hermaphroditic, composed of 
six parts: the peduncle, receptacle, sepal, petal, stamen, 
and pistil. The development of mature and fertile pol-
len is imperative for successful fertilization, and con-
sequently for  crop yield (Zhang et  al.  2022). Yang et  al. 
(2018) has  reported that Zhong41A and Zhong41B 
has no obvious differences in flower appearance except 
for the smaller corolla in Zhong41A. However, upon 
closer examination, after removing the petals, the CMS 
line  Zhong41A exhibited shorter stamen filaments and 
stigma, indehiscent and light yellow authers, and absent 
of pollen grains. Similarly, a study by Xuan et al. (2022) 
focused on CMS-D2 line SI3A and its restorer line 0-613-
2R has found no morphological differences in vegetative 
growth among those materials. However, during the flow-
ering period, anthers of SI3A and 0-613-2R have showed 
clear differences in appearance and development, and the 
pollen grains of SI3A remain unstained.

Sanders et  al. (1999) has  argued that abnormal 
anther structures and aberrant pollen development 
could affect plant fertility. Laser et  al. (1972) reports 
that pollen abortion can occur at any stage of pollen 
development. Pollen development comprises of three 
major stages: (i) microsporogenesis, which involves 
the differentiation of sporogenous cells and meio-
sis; (ii) post-meiotic development of microspores; (iii) 
microgametogenesis, which involves the microspore 
mitosis (Chaudhury  1993; Gómez et  al.  2015; Halbrit-
ter et  al.  2018). A study by Li et  al. (2021) has  found 
that differences between CMS line  J4A and its main-
tainer line  J4B begin to appear at the start of meiosis. 
In J4A, the middle cell layers do not degenerate, and 
tapetum cells fail to undergo mitosis and are unable to 
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provide nutrients for microspore development, leading 
to microspore abortion  (Li et  al.  2021). Further, Kong 
et  al.  (2017) has  observed H276A microspores and 
has reported that neither the degradation of nuclei dur-
ing the tetrad stage nor the degradation of tapetal cells 
occur during microspore development.

In this study, we used the CMS lines as the maternal 
parents and the restorer lines as the paternal parents. 
Two distinct F2 segregating populations were constructed 
as the experimental materials. Genetic analysis was 
conducted on the fertility survey results. Further, we 
employed phenotypic investigations, scanning electron 
microscopy (SEM) analysis, and paraffin section to deter-
mine the morphological features, cytological characteris-
tics, and sterility of the experimental materials.

Materials and methods
Plant materials and field experiments
Two F2 segregating populations of cotton were estab-
lished using cytoplasmic sterile lines (HaA and 01A, 
maternal) and restorer lines (HaR and 26R, paternal), 
designated  as Y66 (HaA × HaR) and Y73 (01A × 26R), 
respectively. The CMS material  both are G. harknessii 
(CMS-D2) from the Biotechnology Research Institute, 
Chinese Academy of Agricultural Sciences. All experi-
mental materials were grown in a teaching test field at 
Shihezi University (Shihezi, Xinjiang Uygur Autono-
mous Region, China; 85.94°E, 44.27°N; altitude 436  m). 
The cultivation followed standard production practices, 
including regular fertilization and irrigation. The seg-
regating  populations were established in 2019, in the 
procedure  of conducting  crosses to obtain the F1 gen-
eration at first, followed by self-crossing to produce the 
F2 generation. Morphological and cytological analyses 
based on fertility were conducted on the F2 segregating 
populations in 2021.

Fertility investigations and characteristics flower 
morphology
To evaluate fertility, each F2 population was assessed 
during the flowering stage. Plants were categorized  and 
labeled as fertile or sterile based on pollen production, 
and the data was recorded. To ensure accuracy, assess-
ments were conducted at (nearly) the same time  of 
the day under  similar  weather conditions. The survey 
was repeated five times, with at least three flowers per 
plant  were examined each time (Liu et  al.  2018). Fertil-
ity data were analyzed using IBM SPSS Statistics v.26 
to establish the χ2 tests and P-values. The flower buds 
and blooming flowers from sterile and fertile plants 
were sampled at the same growth stage to avoid dis-
crepancies caused by incomplete development or organ 
deformities. The morphology of the floral organs was 

observed and photographed three times at various 
developmental stages.

Sampling and fixation
We selected sterile and fertile flower buds at stages of 
pollen maturation, pre-flowering, and flowering. Paraf-
fin sections were immersed in an FAA fixative solution 
(anhydrous ethanol∶  glacial acetic acid∶  37% formalde-
hyde solution∶ distilled water = 10∶1∶2∶7, v/v), vacu-
umed, and slowly deflated. This step was repeated three 
times for 5–10  min. After vacuuming, sections were 
immersed in a fresh FAA fixation solution and temporar-
ily stored at 4 ℃. After a 24 h incubation period, samples 
were transferred to 70% ethanol and stored at 4 ℃ (Yang 
et al. 2012). SEM samples were soaked in a 2.5% glutaral-
dehyde fixation solution, vacuumed, and slowly deflated. 
And  this process  was repeated three times, 5–10  min 
each time. Samples were then stored in a fresh 2.5% glu-
taraldehyde fixation solution at 4 ℃ (Wu et al. 2015).

SEM observations of cotton anthers
Fixed anthers were first immersed in a 2.5% glutaralde-
hyde fixation solution, followed by soaking in 0.1 mol·L –1 
phosphate buffer (pH = 7.2) for 20  min. This process 
was repeated three times at room temperature. Subse-
quently, anthers underwent dehydration using a series of 
ethanol concentrations: 50%, 70%, 80%, 90%, and 100%, 
each was incubated at 4 ℃ for 20 min. Next, a fully auto-
mated critical-point dryer (Leica EM CPD300, Germany) 
was used for the CO2 drying. The treated anthers were 
mounted on a sample platform using double-sided adhe-
sive tape and coated with a metal layer by sputter deposi-
tion (Chang et al. 2016; Tian et al. 2018; Liu et al. 2019). 
Observations and micrograph acquisition were per-
formed using a scanning electron microscope (Hitachi 
SU8010, Japan) at the Analysis and Testing Center of Shi-
hezi University.

Paraffin section observation of cotton anthers
The anthers, previously immersed in FAA fixative solu-
tion, underwent stepwise dehydration and waxed leach-
ing in the following solution: 75% alcohol for 5  h, 85% 
alcohol for 2.5 h, 90% alcohol for 2.5 h, 95% alcohol for 
1.5 h, and anhydrous ethanol for 30 min, with each step 
repeated twice. Subsequently, they were soaked in xylene 
twice for 10  min each time, followed by immersion in 
paraffin three times for 1  h each  time. The wax-soaked 
samples were then embedded in an embedding machine. 
The melted wax was poured into the embedding frame 
and cooled at -20 ℃ on a freezing table. Once the wax 
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was solidified, samples were sliced into 4–6 μm sections 
using a microtome. The tissue slides were mounted on 
slides and dried for 1 h. After dewaxing in xylene twice 
for 8–10 min each time, samples were rehydrated in etha-
nol for 10  min. Subsequently, samples were placed in a 
0.5% Toluidine Blue O staining solution for 5  min and 
dehydrated in an alcohol gradient series (Min et al. 2014). 
Finally, the samples were rinsed in xylene three times for 
5 min each time, and the tissue sections were mounted. 
Finally, an automatic digital slide scanner (3DHISTECH 
Panoramic MIDI II, Hungary) was used for observation 
and imaging (Shao et al. 2022).

Results
Genetic analysis of the CMS segregating population
In the F2 segregating population, we observed two phe-
notypes of the Y66 and Y73 plants, one was fertile and 
the  other was sterile. Fertility phenotype was assessed 
based on pollen during the flowering stage (Table 1). In the 
Y66 F2 population, we identified 224 fertile plants and 71 
sterile plants, consistent with a 3:1 segregation ratio. Simi-
larly, the Y73 F2 population had 239 fertile plants and 88 
sterile plants, also following a 3:1 segregation ratio.

Phenotype observation of the F2 populations
Throughout the growth and development, there were no 
significant differences in the morphological composition 
of the floral organs between fertile and sterile plants. How-
ever, sterile plants exhibited male sterile flower organs. On 
the day of flowering, there was no noticeable difference in 
the color of the floral organs between the sterile and fertile 
plants, and all petals were in light yellow (Fig. 1 A, E, I, and 
M). However, there were variations in morphological size, 
whereas floral organs, petals, and sepals of  sterile plants 
are  significantly smaller than the fertile plants  among 
Y66 and Y73 (Fig.  1). Upon removing the petals, notice-
able differences in anther histology were observed between 
sterile and fertile plants. Sterile plants possessed small 
shrivelled anthers with short and tiny filaments. No pol-
len was observed in the sterile plants, and the anther sur-
face appeared concave and uneven in light yellow or light 
brown (Fig.  1D  and L). Nevertheless, in fertile plants, we 
noticed plump and spherical anthers with dispersed pollen 
which eventually turning to glossy yellow (Fig. 1H and P).

SEM observation of the anther epidermis in F2
Based on the phenotypic observations, differences were 
observed in anthers between sterile and fertile plants of 
Y66 and Y73 on the flowering day, and anthers of the ster-
ile plants displayed deformities. Further observation using 
SEM revealed that anthers of sterile plants were smaller 
than those of the fertile plants. Moreover, there were obvi-
ous differences in the morphological characteristics of 
the anther epidermis, including the peak and valley of the 
fold (Fig.  2). In Y66 sterile plants, the anther epidermis 
exhibited tight wrinkling and indentation, the epidermis 
was wavy, with  irregular and loosely arranged  folds, and 
smooth peaks and valleys (Fig.  2A–C). Y66 fertile plants 
displayed fully expanded anther epidermis with prominent 
scale-like folds arranged in a closed structure, with high 
peaks and deep valleys, resulting in a relatively rough sur-
face (Fig.  2D–F). Similarly, in Y73 sterile plants, the area 
between the vascular bundle and the anther chamber con-
tracted tightly. The anther epidermis was irregularly folded 
and loosely arranged, with relatively mild peaks and valleys 
(Fig. 2G–I). The anther epidermis of the fully mature Y73 
fertile plants was fully  expanded, with recognizable wavy 
folds, and the epidermal folds were closely packed with 
steep peaks and deep valleys (Fig. 2J–L).

Paraffin sections of anthers from the F2 populations
To further analyze the sterile characteristics of the F2 seg-
regating CMS population, we prepared paraffin sections 
of anthers from sterile and fertile plants at stages of pol-
len maturation, pre-flowering, and flowering (Fig. 3). At 
the pollen maturation stage, we observed a similar degree 
of tapetum degradation in anthers of sterile and fertile 
plants in both Y66 and Y73. The pollen grains were dis-
played clear spinules on their surface, with no obvious 
difference been  observed (Fig.  3A, E, I,  and M). During 
this stage, there were no differences in pollen grain devel-
opment between sterile Y66 and Y73, or between  their 
fertile counterparts. In the pre-flowering stage, notice-
able differences were found in the degree of tapetum 
degradation between sterile and fertile plants in  Y66 
and Y73. The anther chambers of the sterile plants were 
lack of degradation residues of tapetum cell, with pollen 
grains exhibited abnormalities and degradation, resulting 
in empty pollen grains. Furthermore, the nucleolus and 
cytoplasm were  disappeared, eventually forming empty 

Table 1  Segregation ratio of fertile plants and sterile plants in F2 populations

Materials Total Fertility Sterility Expected ratio χ2 P

Y66 295 224 71 3:1 0.137 0.712

Y73 327 239 88 3:1 0.637 0.425
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pollen grains, with reduction of the sharpness of the pol-
len grain spinules. In addition, degradation was observed 
in the cells in the anther chamber and anther vascular 
bundle area (Fig. 3B, C, J,  and K). In fertile plants, fully 
developed pollen grains showed normal morphology 
and structure, and the degraded tapetum was evenly dis-
tributed (Fig. 3F, G, N, and O). On the day of flowering, 
anthers from sterile plants showed inward shrinkage of 
the anther chamber, while those from fertile plants were 
full expanded (Fig. 3D, H, L, and P).

Discussion
Potential of the male sterility for producing hybrid seeds
Hybrid seeds have better characteristics in terms of 
yield, environmental adaptability, and disease resist-
ance (Groszmann et  al.  2013; Du et  al.  2020). The 
selection of the parental line is the key for hybrid seed 

production (Mukri et  al.  2022). Male sterile line  is 
effective for ensuring the purity of hybrid seeds (Chen 
et  al.  2014; Kim et  al.  2018). Compared with artificial 
and chemical emasculation, using  male sterile cul-
tivars can significantly reduce labor costs and effec-
tively utilize materials and financial resource (Colombo 
et al. 2017; Sekiguchi et al. 2023). In addition, the male 
sterile is a straightforward and effective trait for large-
scale seed production. The higher degree of sterility, 
the greater purity of the hybrid line. The method to uti-
lize male sterility in hybrid seed production include 
the “three-line system” and the “two-line system”  (the 
sterile line and the restorer line) (Ashraf et al. 2020; Liu 
et  al.  2024). Restorer lines are used for produce com-
mercial hybrid seeds, while maintainer lines are used 
to propagate the seeds of sterile lines (Wang 2019; He 
et  al.  2020). The use of male sterile lines for hybrid 

Fig. 1  Phenotypic observation of Y66 and Y73. Floral organs’ morphology, including flower, petal, calyx, and anther at different developmental 
stages of Y66 sterile plants (A-D), Y66 fertile plants (E–H), Y73 sterile plants (I-L), and Y73 fertile plants (M-P). Scale bar: 1 cm
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seed production not only optimizes heterosis but 
also underpins the industrialization of germplasm 
resources. Thus, many researchers are performing in-
depth exploration of excellent germplasm resources or 
the improvement of existing sterile and restorer lines 
through genetic engineering technology to promote the 
application of sterile lines in hybrid production.

Genetic mechanisms of CMS fertility recovery in cotton
The fertility of the most reported cytoplasmic male 
sterile lines is controlled by single or multiple genes in 
plants (Jaqueth et  al.  2020; Melonek et  al.  2021; Cheng 
et  al.  2023). Meyer (1975) has  reported that fertility 
recovery in G. harknessii CMS is controlled by two pairs 
of independently inherited genes: a dominant gene and 
a recessive gene. Weaver et  al. (1977) and Sheetz et  al. 
(1980)  have reported that the  fertility recovery was 

Fig. 2  SEM observations of the anther epidermis in Y66 and Y73 plants on the flowering day. Anthers and epidermis of Y66 sterile plants (A-C), Y66 
fertile plants (D-F), Y73 sterile plants (G-I), and Y73 fertile plants (J-L). Magnification factor: × 60 (A, D, G, J); × 1 000 (B, E, H, K); × 3 000 (C, F, I, L). Scale 
bars: 500 μm (A, D, G, J);  50 μm (B, E, H, K); 10 μm (C, F, I, L)
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controlled by a partially dominant gene (Rf). Dasilva et al. 
(1981) have proposed that fertility recovery is controlled 
by at least three dominant genes. Despite these studies, 
there is still no consensus regarding the genetic mecha-
nisms underlying fertility recovery in G. harknessii CMS. 
Wang (2019) has reported that fertility recovery in sterile 

lines is controlled by two independent dominant genes 
(Rf1 and Rf2), of which Rf1 is completely dominant and Rf2 
is partially dominant. The genetic effect of Rf1 on fertility 
recovery is greater than that of Rf2. In a study by Liu et al. 
(2018) on the ZBA line, it has been found that the fertility 
restoration gene in G. harknessii is controlled by a single 

Fig. 3  Observation of paraffin sections of anther of Y66 and Y73 plants at different developmental stages. Y66 sterile plant anther section at pollen 
maturation stage (A), pre-flowering stage (B and C), flowering stage (D). Y66 fertile plant anther section at pollen maturation stage (E), pre-flowering 
stage (F and G), flowering stage (H). Y73 sterile plant anther section at pollen maturation stage (I), pre-flowering stage (J and K), flowering stage 
(L). Y73 fertile plant anther section at pollen maturation stage (M), pre-flowering stage (N and O), and flowering stage (P). Ep: epidermis; En: 
endothecium; Ta: tapetum; PG: pollen grain; EPG: empty pollen grain; St: stomium; V: vascular bundle; C: connective. Scale bar: A, B, E, F, I, J, M, and N: 
100 μm; C, D, G, H, K, L, O, and P: 200 μm
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dominant gene. Further, Gao et al. (2022) have identified 
6001A and Cheng et al. (2023) have  identified 2074A as 
genes that restore sterility, suggesting that fertility is con-
trolled by multiple genes. In summary, the complex regu-
latory mechanisms of CMS leads to inconsistent results 
across studies. In our study, we have analyzed the fertil-
ity of the CMS F2 segregating population genetically and 
have found that the fertility traits of Y66 and Y73 are con-
trolled by a single dominant gene.

Morphological characteristics of flower organs in sterile 
plants of cotton
Flower organs of male sterile cotton exhibit various phe-
notypes, with different fertility levels. Features such as 
stamen atrophy, abnormal anther development and pol-
len sacs, and microspores degeneration are found in abor-
tive flower organs (Zhang et  al.  2014; Jiang et  al.  2020). 
Many studies have reported no obvious difference in 
flower organ composition and developmental processes 
between sterile and fertile  cotton line. However, mor-
phological differences exist between the corresponding 
fertile plants and the maintainer lines of different sterile 
lines (Wu et al. 2015; Kong et al. 2017; Yang et al. 2018; 
Cheng et  al. 2020; Li et  al. 2021). Our investigations on 
the flower organ development have shown that the devel-
opmental processes of sterile and fertile flowers are gen-
erally similar, progressing through seven stages: flower 
bud differentiation, formation, growth, expansion, whit-
ening, corolla development, and shedding. On the day of 
flowering, we have noticed no difference in flower organ 
composition and petal color between the sterile and fer-
tile plants. During the initial phase of flower bud develop-
ment, the stamens of sterile male flowers have developed 
normally, and the shape and size of the flower organs are 
not significantly different from those of fertile flowers. 
However, differences in filament length, anther morphol-
ogy, and anther color have been observed between the 
Y66 and Y73 sterile plants and the fertile plants (Fig. 1). 
SEM observation has  shown that the anthers of sterile 
plants are smaller than those of fertile plants, and the 
morphology of the folds in the anther epidermis differs 
(Fig. 2). In summary, our analysis indicates that the abor-
tive floral organs of Y66 and Y73 plants exhibit stamen 
atrophy and anther abnormalities.

Pollen abortion period, characteristics, and causes 
of sterile plants in cotton
Pollen development is closely linked to anther develop-
ment (Scott et al. 2004). de Moura et al. (2020) classified 
cotton (G. hirsutum) flower development into 11 stages, 
with initiation of anther development at stage two. Laser 
et  al. (1972) believe that pollen abortion could occur at 
any stage of pollen development and that the stage and 

characteristics of abortion vary among different male 
sterile lines. Mutations in genes responsible for stamen 
development, sporogonium differentiation, meiosis, 
mitosis, microspore development, or flower differentia-
tion can induce male sterility in plants (Glover et al. 1998; 
Niu et al. 2013; Ko et al. 2014; Han et al. 2018). Xie et al. 
(2006) have  reported that various factors contribute to 
plant male sterility and the process of anther abortion 
is intricate, including abnormal tapetal development, 
ATPase, Ca2+ concentration, cytoskeleton, and pro-
grammed cell death. Pressman et  al. (2012) show that 
plant anthers accumulate a variety of carbohydrates, 
such as soluble sugars, starches, and proteins to pro-
vide adequate nutrition for normal pollen development. 
Changes in nutrient metabolism during plant develop-
ment can lead to male sterility. The tapetum, which is the 
innermost anther wall and directly connects to the pollen 
mother cells, plays a crucial role in pollen development 
(Falasca et  al.  2013; Singh et  al.  2015; Sun et  al.  2019). 
Precise regulation of tapetum degradation is crucial, as it 
provides essential enzymes and nutrients for microspore 
development. Premature or delayed tapetum degrada-
tion can lead to microspore abortion (Balk et  al.  2001; 
Ariizumi et al. 2011; Wan et al. 2011). Our observation of 
anther tissue sections (Fig. 3) has showed no significant 
difference in pollen development between the sterile and 
fertile plants at the pollen maturity stage. However, pol-
len from sterile plants showed abnormal development. 
Further examination indicated that the degree of tapetum 
degradation differed between sterile and fertile plants. 
Prior to flowering, the sterile plants have  shown almost 
no tapetum degradation residue in the anther cham-
ber, whereas fertile plants have displayed more tapetum 
degradation residue and a even distribution. Over time, 
pollen grains in the sterile plants have been  degraded, 
resulting in empty pollen grains, while cells in the con-
necting area between the vascular bundles and the anther 
chamber have underwent degradation. In summary, pol-
len abortion in Y66 and Y73 occur from pollen maturity 
to flowering. Premature degradation of the tapetum and 
insufficient nutrient supply to maintain pollen activity in 
the anther chamber likely result in pollen grain degrada-
tion and eventually male sterility.

Conclusion
Based on morphological investigation of flower organs, 
cytological observation of anthers, and genetic analysis, 
we analyzed the phenotypes of the two F2 segregating 
populations  established from hybrid of sterile lines and 
restorer lines and revealed possible causes of the  abor-
tion  of fertility. Our genetic analysis suggests that the 
fertility restoring gene is controlled by a single domi-
nant gene. Morphologically, sterile plants exhibit stamen 
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atrophy and abnormal anthers. Pollen abortion has been 
observed during pollen maturity and flowering. The for-
mation of empty pollen grains may have been caused 
by the premature degradation of the tapetum. Overall, 
this study provides valuable information on the CMS 
resources of cotton and establishes a foundation for 
hybrid breeding.
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