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Abstract

The situation of global warming imparts negative impacts on crop growth and development. Cotton is the most
important fiber crop around the globe. However, frequent drought episodes pose serious threats to cotton produc-
tion worldwide. Due to the complex genetic structure of drought tolerance, the development of a tolerant cultivar
is cumbersome via conventional breeding. Multiple omics techniques have appeared as successful tool for cot-

ton improvement in drought tolerance. Advanced omics-based biotechniques have paved the way for generation
of omics data like transcriptomics, genomics, metabolomics and proteomics, which greatly expand the knowledge
of cotton response to drought stress. Omics methodologies and have provided ways for the identification of quan-
titative trait loci (QTLs), gene regulatory networks, and other regulatory pathways against drought stress in cotton.
These resources could speed up the discovery and incorporation of drought tolerant traits in the elite genotypes.
The genome wide association study (GWAS), gene-editing system CRISPER/Cas9, gene silencing through RNAi are effi-
cient tools to explore the molecular mechanism of drought tolerance and facilitate the identification of mechanisms
and candidate genes for the improvement of drought tolerance in cotton.
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Introduction is threatening the plant’s growth and development by

Global warming has become the most concerning issue,
specifically in developing countries. The atmosphere
is warming day by day with an expectation to raise the
average temperature by 1.5-2.0 °C in 2050 globally
(Armstrong McKay et al, 2022). The global warming
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exposing different environmental stresses such as heat,
drought, and salinity to plant, resulting in lower crop pro-
duction. Drought stress is considered as the most devas-
tating condition, as it alone affects 45% of the world’s
agricultural land area. It is predicted that the drought
affected terrestrial areas would be doubled by the end of
twenty-first century (Nagamalla et al., 2021).

Drought is defined as an imbalance between soil water
intake and evapotranspiration rate (Wood et al., 2023).
Drought stress occurrence is erratic as it depends upon
several factors, e.g. the amount and distribution of rain-
fall, rate of evaporation, and moisture conservation abil-
ity of the soils (Panigrahi et al., 2021). Less precipitation
along with increased evapotranspiration rate, low atmos-
pheric and soil humidity and high ambient tempera-
ture also lead to drought stress. Several climatic models
have predicted the increase in frequency and severity of
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drought in response to the ongoing global climate change
scenario (Ma et al., 2018).

Cotton (Gossypium hirsutum L.) is the most important
fiber crop and the second high-value oilseed crop which
plays a key role in the world economy. It is cultivated as
a commercial crop in more than 30 countries around
the globe with the major share from China, India, USA
and Pakistan (Fan et al., 2018). From the last fifty years,
the drought stress has caused 67% of cotton lint loss in
United States (Abdelraheem et al., 2019). Production of
cotton fiber under drought and heat stress lead to the
yield loss of 34% (Ullah et al., 2020). Cotton response
to drought stress is growth stage dependent. From ger-
mination to fiber development, almost all stages are
affected by drought stress. Cotton possesses moderate
tolerance against drought stress at vegetative growth
phase. However, the reproductive growth of cotton is
highly sensitive to drought stress. Seed germination is
considered as one of the earlier critical stage to drought
stress, which creates metabolic imbalance (Khalequzza-
man et al.,, 2023), and causing 26% reduction in the num-
ber of sympodial branches, 27% decrease in the number
of bolls per plant, 14% decrease in the boll weight, 4%
reduction in the ginning out turn rate and 27% reduc-
tion in seed cotton yield (Bakhsh et al., 2019). The repro-
ductive stage from 1st square to 1st flower and from 1st
flower to peak flowering are the most sensitive stages
for cotton under heat and drought stress (Zonta et al,,
2017). Drought stress during the 1st fourteen days after
anthesis imparts detrimental effects and leads to the
abscission of immature bolls; however, bolls are unaf-
fected by drought or heat stress after this period. Water
depletion during flowering, squaring, and boll-opening
stages negatively correlates with yield, leads to 38.8%,
27.9%, and 7.6% vyield reduction, respectively (Wang
et al,, 2017b).

At the early fiber developmental stage, water scarcity
restricts the elongation of fiber length and uniformity by
disturbing the physiological and molecular regulatory
processes of cell expansion (Ul-Allah et al., 2021). Cot-
ton at the fiber initiation stage is less sensitive to water
scarcity, but profound influence of drought stress has
been seen on fiber elongation via the down-regulation
of genes involved in cell wall expansion and loosening
process (Padmalatha et al., 2012). Plants under moisture-
deficit conditions produce short, immature, and weaker
fiber. Micronaire value of plants under severe water defi-
cit conditions is increased (>4.2) (Lokhande et al., 2014).
Therefore, there is a dire need to develop drought toler-
ant cotton genotypes for ensuring the sustainable pro-
duction under climate change scenario.

Plants adopt four types of strategies to protect them-
selves from drought stress: escape, avoidance, recovery,
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and tolerance (Ullah et al.,, 2017). In drought escape,
plants shorten the developmental period and complete
their life cycle before the environment becomes dry
and hostile to avoid the damage. In drought avoidance,
plants mainly make morpho-physiological adjustments,
e.g. increased root length, less number of stomata and
conductance, reduced leaf area, and increased leaf
thickness to retain maximum water in plants (Clauw
et al., 2016). In the recovery mechanism, plants resume
their growth and yield after facing severe drought con-
ditions; while tolerance refers to the ability of plant to
grow and produce economical yield under restricted
water supply (Abdelraheem et al.,, 2019; Rodriguez-
Uribe et al., 2014; Ullah et al.,, 2017). Short-term and
long-term responses of the plant under drought stress
have been illustrated in Fig. 1.

In the past decades, efforts have been made to mitigate
the effect of drought stress by untilizing four types of
strategies (escape, avoidance, recovery, and tolerance) in
cotton. But the success are very limited due to the com-
plex genetic regulatory network of drought response.
The drought response associated traits are regulated by
quantitative genes, which have small effects and signifi-
cant effect of genotype X environment (G X E) interaction.
In the era of omics, the high-throughput data of genom-
ics, transcriptomics, proteomics, and metabolomics
techniques have offered better tools to understand the
response of plants to stresses. The omics-based analy-
sis on drought stress response provides insight into the
respective molecular regulatory networks that in turn
pave way for cotton improvement under drought stress
(Wu et al., 2017; Shah et al., 2018; Jain et al., 2019).

Omics approaches for understanding drought
response in cotton

Over the last few decades, omics approaches have become
the valuable tool for exploring the plants’ response to abi-
otic stress, by analyzing molecular dynamics on genomic,
transcriptomic, proteomics and metabolism level in
cotton (Yang et al., 2021). A general overview of omics
approaches has been presented in Fig. 2 for its utilization
in drought tolerance study in cotton.

Progress of genomics for drought tolerance in cotton
With the progress in DNA sequencing and genotyping
techniques, genomic datasets in cotton are widely used
for designing different sequence-based markers such
as simple sequence repeats (SSRs), expressed sequence
tags (ESTs), single nucleotide polymorphisms (SNPs),
and so on.

Availability of a high-quality genome reference
sequence for Gossypium species facilitate the develop-
ment of microarrays, which has been widely used for
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Fig. 1 An overview of short-term and long-term morphological, physiological, and biochemical changes in plants towards drought stress. The
short-term changes include osmotic adjustment in roots, signaling transport, stomatal closure, decrease of carbon assimilation, assimilation

of transport, decrease in expansion and leaf number and ultimately growth inhibition. Long-term changes include turgor maintenance, sustained
root growth, increase of root/shoot and absorption area, osmotic adjustment and many more leads toward drought acclimation
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Fig. 2 Utilization of multi-omics approaches for investigating mechanism of drought response in cotton. Genomics characterizes variations at
DNA level, transcriptomics describes the gene expression pattern, proteomics explores the protein abundant and their interaction, phenomics
investigates the morpho-physiological parameters, and metabolomics profiles the metabolites in cotton. The data generated through these
approaches are analyzed by different tools, and integrative analysis characterizes and identifies genes involved in drought response in cotton
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the identification of large number of molecular markers
(Hulse-Kemp et al., 2015). CottonSNP63K array, based
on the Illumina technology, has been utilized for breed-
ing and discoveries of regulatory networks in plant
(Hulse-Kemp et al., 2015). Ulloa et al. (2020) reported
that SNP markers are powerful for studying irriga-
tion’s effect on cotton and for marker assisted selection
of drought tolerant and susceptible cultivars. Affyme-
trix GeneChip Cotton Genome Array was used in the
development of single strand conformation polymor-
phism (SSCP) functional markers regarding drought
tolerance. A total of fifty-two SSCP markers identified
in cotton were found significantly correlated with dif-
ferent growth traits related to drought tolerance (Rod-
riguez-Uribe et al., 2014).

Genomic regions that are highly linked to drought
stress tolerance traits could be used as molecular mark-
ers. A total of 4 QTLs for relative water contents, 2
QTLs for excised leaf water loss, 1 QTLs for cell mem-
brane stability (CMS), stomatal size, and stomatal fre-
quency have been detected using SSR and EST-SSR
based marker data in upland cotton under drought stress
(Amjid et al.,, 2015). There are 2 QTLs, one for osmotic
potential and another for osmotic adjustment been iden-
tified in the intraspecific population of upland cotton,
and 3 QTLs been mapped on each of chromosome 14, 16
and 25 against osmotic potential under drought stress in
the interspecific population (G. hirsutumxG. bar-
badense) (Babar et al., 2009). Further research has also
been carried out to study the genetic basis of drought
tolerance in the backcrossed population of G. tomento-
sum and G. hirsutum, whereas 30 QTLs for CMS, chlo-
rophyll content, saturated leaf weight, fresh and dry leaf
weight, fresh and dry shoot biomass, fresh and dry shoot
biomass ratio, ratio between fresh shoot biomass and
fresh root biomass, total fresh and dry biomass, and the
ratio between dry shoot biomass and dry root biomass
have been mapped in this population. Most of the QTLs
related to drought response traits have been mapped on
At-genome rather than Dt-genome, in which 17 QTLs
are mapped on At-subgenome and 13 on Dt-subgenome
(Magwanga et al., 2020). Identified QTLs regarding fiber
quality and yield contributing traits under drought stress
have been enlisted in Table 1 and drought responsive
physiological traits are listed in Table 2.

Genome-wide association study (GWAS) is an effec-
tive method, which can associate phenotypes with gen-
otypes in natural populations and reveal vast natural
variations and candidate genes (Edae et al., 2014; Kumar
et al, 2015; Demirjian et al., 2023). Li et al. (2019)
have explored the complex genetic architecture of
drought tolerance in 316 upland cotton genotypes by
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using 81 675 SNPs, where 3, 6 and 8 SNPs show sig-
nificant association with cotyledon wilting score, leaf
temperature and euphylla wilting score respectively.
Four candidate genes, GhCIPK6, WRKY70, NETIA and
SnRK2.6 identified in cotton may involve in drought
stress response. In another study, 55 060 SNPs are used
to identify potential candidate genes for drought toler-
ance in cotton, and four genes has been found, includ-
ing RD2, HAT22, PP2C and 2C (Hou et al., 2018). These
genomics studies open a new window for marker assisted
based breeding of cotton to produce better fiber quality
and higher yield cultivars under drought stress.

Use of transcriptomic to explore drought

tolerance mechanism in cotton

Transcriptome represents all types of transcripts pro-
duced by the organism, and in some studies from par-
ticular cell or tissue (Yang et al., 2021), which has been
used to investigate the dynamic gene expression in
response to a stimuli over a particular time period (El-
Metwally et al., 2014). Previously transcriptome dynam-
ics were explored by differential display-PCR (DD-PCR),
cDNAs-AFLP and suppression subtractive hybridization
(SSH), but they have the issue of low resolution (Nata-
raja et al., 2017). Nowadays with the invention of robust
techniques, such as digital gene expression profiling,
microarrays, and NGS, it has greatly simplified the gene
expression profiling (Shah et al., 2018). Genes involved
in starch and sucrose synthesis, carotenoid biosynthe-
sis ABA precursor gene 9-cis-epoxycarotenoid dioxyge-
nase (NCED), ABA pathway gene ABA 8-hydroxylase,
and aquaporin genes are found to be up-regulated in
drought-challenged root tissue of cotton through RNA-
Seq (Bowman et al.,, 2013). Further, higher expression
of photosynthesis genes and chlorophyll a/b binding
proteins have been found in roots and as compared to
leaves (Ranjan et al., 2015). Transcriptional factors are
important regulatory genes in drought stress signaling
pathways, several TFs gene family have been up-regu-
lated during drought stress (Fig. 3), such as genes from
AP2/ERF, MYB, WRKY, bHLH, NAC, and bZIP family
(Table 3).

High-throughput sequencing of small RNA librar-
ies provided remarkable platform for the identification
of microRNAs and their corresponding gene tar-
gets which respond to drought stress in crop (Jones-
Rhoades et al., 2004; Xie et al.,, 2015; Ferdous et al,,
2015). Through small RNA sequencing, four drought-
responsive miRNA have been identified in cotton,
including miR159-TCP3 and GRF1 present in roots
and leaves, miR395-APS1 in roots and miR162-DCL1
in leaves (Wang et al., 2013).



Sharif et al. Journal of Cotton Research (2024) 7:32 Page 5 of 13
Table 1 Published genomic regions/ QTLs associated with fiber quality and yield traits under drought stress in G. hirsutum
Traits Chromosome Species No. of QTLs QTL identification Used marker References
location model/analysis system
Boll size A1, A6, A7, A9, D15,  G. hirsutum 14 Single-marker SNP (Ulloa et al.,, 2020)
D17,D19, D22, D23, analysis
D24,D26
Number of seeds A6, A7, A9, A10, G. hirsutum 13 Single-marker SNP (Ulloa et al.,, 2020)
/boll A11,D16,D17, analysis
D19, D23, D24, D26
Seed index A5, A7, A8, A9, G. hirsutum 16 Single-marker SNP (Ulloa et al.,, 2020)
A10,A12,D15,D16, analysis
D17,D20, D21, D22,
D23,D25,D26
Lint index A2, A4, A7, A8, A9, G. hirsutum 22 Single-marker SNP (Ulloa et al.,, 2020)
A9, A10,A11,A13, analysis
D14,D15,D15,D19,
D20, D21, D23, D24,
D25,D25,D26
Lint percentage A2, A8, A9, A10, G. hirsutum 15 Single-marker SNP (Ulloa et al,, 2020)
A10,A11,A13,D14, analysis
D19,D21,D22, D23,
D25
Fiber micronaire A4, A5, A8, A9, A10,  G. hirsutum 18 Single-marker SNP (Ulloa et al., 2020)
A13,D14,D16,D18, analysis
D19,D21,D22, D23,
D24, D25
Fiber strength A8, A10,D14, D15, G. hirsutum 14 Single-marker SNP (Ulloa et al., 2020)
D17,D18,D19, D21, analysis
D23,D24, D25
Fiber length A3, A4, A8, A10, G. hirsutum 13 Single-marker SNP (Ulloa et al.,, 2020)
D14,D18,D19, D21, analysis
D23
Fiber uniformity A7, A8, A10, A12, G. hirsutum 15 Single-marker SNP (Ulloa et al.,, 2020)
A13,D14,D15,D17, analysis
D18,D19, D20, D21,
D24, D25
Boll size A9, D19, D22, D26 G. hirsutum 4 MQM QTL model SNP (Ulloa et al.,, 2020)
Number of seeds A7,D26 G. hirsutum 3 MQM QTL model SNP (Ulloa et al., 2020)
/boll
Seed index D23 G. hirsutum 1 MQM QTL model SNP (Ulloa et al,, 2020)
Lint index A2, A10,A13,D19 G. hirsutum 5 MQM QTL model SNP (Ulloa et al,, 2020)
Lint percentage A10,A11,A13 G. hirsutum 8 MQM QTL model SNP (Ulloa et al., 2020)
Fiber micronair A8,A10,D14 G. hirsutum 7 MQM QTL model SNP (Ulloa et al,, 2020)
Fiber strength A8, A10,D14, D18, G. hirsutum 7 MQM QTL model SNP (Ulloa et al.,, 2020)
D24
Fiber length A8, A10,D14, D21 G. hirsutum 6 MQM QTL model SNP (Ulloa et al.,, 2020)
Fiber uniformity A10 G. hirsutum 2 MQM QTL model SNP (Ulloa et al., 2020)

Use of proteomics to explore drought

tolerance mechanism in cotton

Most of the physiologic characters of the cell and phe-
notypic trait is determined by the protein rather than
by nucleic acid (Deeba et al., 2012). Further, post-trans-
lational modifications of proteins i.e. phosphorylation,
ubiquitination, methylation, acetylation, glycosylation,
oxidation, and nitrosylation that profoundly affect their
activities, which could be illustrated by omics studies
(Deeba et al., 2012; Guerra et al., 2015).

Proteomic studies in cotton have been used to explore
the role of different drought responsive proteins involved
in signal transduction pathways, redox homeostasis
for plant protection, acclimatization and activation of
antioxidants under drought stress (Barkla et al., 2013).
Proteomic analysis in cotton allowed the identifica-
tion of 223 to 1 273 different expressed proteins under
drought stress from seedling to cotton fiber develop-
ment stage. Through matrix-assisted laser desorption/
ionization (MALDI-TOF) and MALDI-TOF/TOF mass
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Table 2 Published genomic regions/ QTLs associated with physiological traits under drought stress in cotton

Traits Chromosome location Species

No. of QTLs QTL identification model/

Used marker system References

Relative water A12,D23 G. hirsutum 2
contents

Excised water D23 G. hirsutum 1
loss

Relative water A5, A5 G. hirsutum 2
contents

Excised water A7 G. hirsutum 1
loss

Cell membrane Al G. hirsutum 1
thermo stability

(CMS)

Stomatal fre- A13 G. hirsutum 1
quency

Stomatal size A6 G. hirsutum 1

Osmotic poten- D20 G. hirsutum 2

tial

Osmotic adjust- D20 G. hirsutum 1

ment

Osmotic poten- A6, D25,D14 G. hirsu- 3

tial tumxG.
barbadense

CMS, Chloro- A1,A5,D15 G.tomen- 5

phyll contents, tosum X G.

and Saturated hirsutum

leaf weight

analysis

composite interval mapping  SSR (Saleem et al,

(CIM) 2015)

CIM SSR (Saleem et al.,
2015)

CIM EST-SSR (Amjid et al,,
2015)

CIM EST-SSR (Amjid et al,,
2015)

CIM EST-SSR (Amjid et al,,
2015)

CIm EST-SSR (Amjid et al,,
2015)

CIm EST-SSR (Amjid et al,,
2015)

CIM SSR (Saeed et al.,
2011)

CcIM SSR (Saeed et al.,
2011)

Single factor analysis SSR (Saeed et al.,
2011)

@] SNP (Magwanga et al,,

2020)

spectrophotometry, proteins involved in metabolism,
synthesis/ regulation of antioxidants, cellular transporta-
tion, and formation of cell structure have been found to
play a key role in determining the leaf’s growth and fine
roots morphology. Proteins, i.e.,, 5 methyl tetra hydro
pteroyl tri glutamate-homocysteine methyltransferase,
ascorbate peroxidase, UDP-d-glucose pyrophosphory-
lase, the vacuolar HT-ATPase catalytic subunit, ATP
synthase CF1 alpha subunit, translation initiation factor
5A, 14-3-3 g protein, pathogenesis-related protein 10,
Glycine-rich RNA-binding proteins, and GTP-binding
protein G alpha subunit have been found as up-regulated
in response to drought stress (Deeba et al., 2012; Xiao
et al., 2020; Zhang et al., 2016; Zheng et al., 2014).

Regarding cell wall components of cotton fiber, sucrose
synthase (SuSy), Uridine diphosphate glucose (UDP-
Glc), and UDP-glucose pyrophosphorylas (UGPase) were
enhanced in drought stress. Lignin synthetic, i.e., phe-
nylcoumaran benzylic ether reductases (PCBER, 3203,
2705), and proteins involved in lignin methylation, i.e.,
S-adenosylmethionine, S-adenosylmethionine synthetase
were overexpressed under drought stress leading to acti-
vate lignin biosynthesis pathway that effectively responds
to avoid drought injury.

Online platform for integrative omics datasets

The era of omics has been progressing very fast with
the development of automated sequencing-based
techniques. In 2012, the genome sequence of a dip-
loid cotton species (G. raimondi) has been released
(Wang et al., 2012). Later, within two to three years,
the genomes of one diploid (G. arboreum) and two
cultivated tetraploid (G. hirsutum and G. barbadense)
have also been sequenced (Du et al., 2018; Hu et al,,
2019; Li et al., 2014, 2015; Wang et al., 2019a). With
the availability of sequencing data, different databases,
e.g., CottonGen, MaGenDB, CottonGVD, GRAND,
CottonFGD and ccNet have been established for omics
studies in cotton (Table 4) (You et al., 2017; Yu et al.,
2014; Yang et al., 2023; Zhang et al., 2015; Wheeler
et al., 2007; Zhu et al., 2017). These datasets have pro-
vided useful information for drought response anal-
yses, such as CottonGen provides data including
genome sequences, genes, markers, trait loci, genetic
maps and germplasm resources (Fang et al.,, 2017; Yu
et al., 2014); CottonFGD integrates genome sequences
and annotations, genetic markers, and gene expression
and sequence variation data for four Gossypium spe-
cies (Zhu et al., 2017).
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Table 4 Summary of omics databases and weblink in cotton
Database Weblink Description Reference
Cottongen https://www.cottongen.org/ Provides genomic, genetic and breeding  (Yu et al, 2014)
resources of cotton
CottonFGD https://cottonfgd.org/ Provides genetics and omics data, (Zhu et al, 2017)
including genetic marker annotations,
structural annotations, functional anno-
tations, RNA-seq expression datasets,
and population resequencing data
GCal https://cotton.hzau.edu.cn/ Includes genomics data (genomic (Wang et al,, 20193, b)
assembles and annotation files) of TM-1
accession of G. hirsutum and 3-79 acces-
sion of G. barbadense, SNP, and pheno-
typic data for GWAS in G. hirsutum
NCBI https://www.ncbi.nlm.nih.gov/genome/? A major source of bioinformatics (Wheeler et al,, 2007)
term=cotton and service tools also provides genome,
transcript and protein data of different
cotton species
GraP http://structuralbiology.cau.edu.cn/GraP/ A source for functional genomics analy- ~ (Zhang et al., 2015)
sisin G. raimondi
CcNET http://structuralbiology.cau.edu.cn/ A platform for comparative gene func- (You et al, 2017)

gossypium/

tional analysis across diploid and poly-
ploidy species of cotton

Molecular regulatory network of drought response
in cotton

Functional genomics is integrating the omics data with
techniques of molecular biology and cell biology, to
explore the function and regulation of genes. It relates
the phenotype and genotype to analyze the molecular
mechanism on levels of transcription, translation, pro-
tein—protein interaction and epigenetics. Gene editing
tool CRISPR/Cas9 system and TALEN have being used
to improve the crop genome without transgenes (Rinaldo
et al., 2015). Particularly, CRISPER/Cas9 has been used
successfully to study the drought stress tolerance by
altering the drought responsive genes in rice (Wang et al.,
2017a), papaya (Arroyo-Herrera et al., 2016), wheat (Kim
et al,, 2018) and wild tomato (Wang et al., 2017a).

When stress signal perceived by sensor proteins, i.e.,
RLKs and RLPs, which present in the plasma mem-
brane activate the ABA-dependent and Independent
signaling pathways, induce the drought stress response.
In the ABA-dependent pathway, ABA level in the cell
increases under stress condition, available ABA binds
to receptor GhPYL9-11A which further dissociates
the SnRK2/OST1 complex by phosphorylating SnRK2
and binds to protein phosphatase (PP2Cs) GhDRP1
(Chen et al., 2021a, b; Liang et al., 2017). Three PP2Cs,
i.e., GhHAI2, GhAHG3, and GhABI2, have been identi-
fied (Shazadee et al., 2022). SnRK2 by interacting with
multiple TFs stimulates the stomatal closure genes,
i.e., GhSLACI. Virus-induced gene silencing (VIGS) of

GhSnRPK?2 in cotton compromise the drought tolerance
in transgenic plants in contrast to wild type plants. Plants
overexpressing GhSnRK2 gene displayed less water
loss, increased water content, turgor regulation, pro-
line accumulation, and biomass in cotton under drought
stress (Bello et al., 2014). Another set of PYR and PYL,
i.e., GhPYL9-5D and GhPYRI-3A also have been iden-
tified in the cotton. MAPKK pathway also activates the
drought-responsive TFs in the ABA-dependent manner.
Increased ABA activates the MAP3Ks, i.e., GhMAP3K49
or GhMAP3K15, which activates MAKKSs, i.e., GhMKK9
and GhMKK4, and then activates MAPK, i.e.,
GhMPK17, GhMPK7 and GhMPK®, and the cascade may
activate ROS and other ABA-mediated drought stress
response. GhWRKY59 is phosphorylated by MAPK cas-
cade (GhMAP3K15-GhMKK4-GhMPKS®6), and the modi-
fied GhWRKY59 binds to the promoter of GZDREB2 and
regulates the expression of drought-sensitive genes (Li
etal., 2017). Jasmonic acid (JA) is also involved in drought
tolerance. Under water sufficient conditions, JA is absent,
and jasmonate-insensitive/jasmonate-zim (JAI3/JAZ)
protein interacts with several TFs, such as MYC2 (Mye-
locytomatosis), and reduces their activity. However, JA
and its derivative are present under stress conditions and
lead to the degradation of JAZ proteins resulting in the
activation of MYC2. Activated MYC2 can regulate the
expression of several other TFs that are important for
drought tolerance, including DREB, AP2/ERF, NAC, and
bZIP. VIGS-mediated silencing of GbMYBS transcription
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factor decreases drought tolerance in cotton, with
reduced proline contents, increased malondialdehyde
(MDA), and antioxidants enzyme activities. Silencing of
GbMYBS in cotton compromised the drought tolerance
in cotton by reducing the recovery survival rate of post-
rewatering to 50% ,in comparison to the 90% survival
rate of wild type plants. These findings suggest the posi-
tive role of GbMYBS transcriptional factor in drought
stress response (Chen et al., 2015). However, recently
JAZ2 was also found to be involved in a cascade with
OST1 in the ABA dependent control of the stomatal clo-
sure process, indicating that it is essential to coordinate
the JA and ABA crosstalk under drought stress. Further,
activation of JA-responsive genes leads to various mor-
phological and physiological responses, such as stomatal
closure, alteration of root architecture to enhance water
uptake, synthesis of osmoprotectants such as proline and
sugars, and reinforcement of cell walls aimed at miti-
gating the effects of drought stress in cotton. In cotton,
similar as other plants, calcium (Ca”") signaling pathways
play a crucial role in mediating responses to drought
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stress. Drought stress can induce the influx of calcium
ions into the cytoplasm of cotton cells. This influx may
be mediated by calcium channel protein GRCNGC (Chen
et al., 2023). Calcium sensors such as calmodulin (CaM),
calmodulin-like proteins (CMLs), Calcineurin B-like
proteins (GhCBL2A1) and calcium-dependent protein
kinases (GhCDPK4 and GhCDPK60) are activated in
cotton cells during drought stress (Kong et al.,, 2023).
Activated CBLs in cotton cells interact with CBL-inter-
acting protein kinases (GhCIPK6A3, GhCIPK23), which
phosphorylate target proteins involved in stress signaling
pathways, ion transport, and gene expression regulation
(Chao et al., 2022; He et al., 2013). Hence, calcium sign-
aling pathways can regulate gene expression in cotton
by modulating the activity of transcription factors and
regulate reactive oxygen species (ROS) scavenging and
antioxidant defense mechanisms, stomatal closure, and
osmotic adjustment. Illustration of different signaling
pathway in response to drought stress and VIGS system
verified drought responsive genes have been summarized
in Fig. 3 and Table 5.
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Fig. 3 Flow diagram shows activation of multiple signal transduction pathways in response to drought stress in cotton
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Table 5 List of Genes involved in drought tolerance validated function through Virus induced gene silencing (VIGS) experiment in

cotton
Genes Phenotype in VIGS line References
GhSnRK2 Alleviated drought tolerance (Bello et al, 2014)

Sucrose non-fermenting
1-related protein kinase 2

GbMYB5
R2R3-type MYB
transcription factor
PHYA1
GhJUBIL1
(SCW)
GhFAR3.1
of the leaves

GhNAC79

Decreased drought tolerance

Improved drought, salt and heat tolerance

Reduced drought tolerance retarded secondary cell wall
Reduced wax contents and relative water contents

Overexpression led to early flowering and improved

(Chenetal, 2015)

(Abdurakhmonov et al., 2014)

(Chenetal, 20213, b)

(Luetal, 2021)

(Guoetal, 2017)

drought tolerance in cotton

GhWRKY46
GhTRX134

Gene silencing led to reduced drought tolerance

Reduced drought tolerance

(Lietal, 2021)
(Elasad et al., 2020)

Strategies to develop drought tolerance cultivars
in cotton

Improvement of drought tolerance traits require explor-
ing the diverse genetic resources adapting to harsh envi-
ronment (Mickelbart et al., 2015; Valliyodan et al., 2017).
Cotton plants are mainly discovered at water deficit
areas, having greater genetic variability in drought tol-
erance (Pettigrew 2004). Different morphological (root,
leaf, and stem) character, physiological parameters,
and yield have been reported as key selection criteria of
drought-tolerant cultivars in cotton (Valliyodan et al.,
2017). Different drought tolerant genotypes identified/
developed in cotton are presented in Table 6. Drought
tolerance can be developed by using the gene editing tool

to targete the negative regulators of abiotic stress respon-
sive genes. CRISPER/Cas9 has been used successfully in
cotton for genome editing in the target trait (Gao et al.,
2017), but functional drought tolerant cultivars has not
been reported yet. Transgenic cotton also paved the way
for development of drought responsive cotton lines. For
example, overexpression of CaHBI2 enhanced drought
tolerance in cotton (Basso et al., 2021). Overexpression
of GKEXLB2 in cotton improved drought tolerance at
germination, seedling and flowering stage (Zhang et al.,
2021b). But to generate drought tolerant cultivars, there
is a dire need to explore genetic diversity existed among
germplasm using conventional and latest molecular
approaches.

Table 6 Cotton drought tolerant genotypes identified/developed worldwide for different drought related parameters at different

growth stages

Genotype Name Criteria for Selection

Experimental Condition Reference

IAC-13-1, Minas Sertaneja, IAC-RM4-SM5,
Acala 1517E-1, and 4521

MNH-552, SLS-1, MNH-806, 1021(Kivi),
LSS, 841/52, MNH-6070, CIM-1100,
MNH-636, MNH-812, FH-113, 4-F, MS-40,
MNH-807, and FH-682

|UB-212, MNH-886, IR-3701, VH-144, NIAB-
111,VH-295, AA-802, FH-113, NS-121,

and FH-142

Higher boll retention capacity

Stable yield performance

Survival rate at the seedling stage

Drought stress in growth chambers (Penna et al,, 1998)

Drought stress in field condition (Dahab et al.,, 2012)

Drought stress in field condition (Ullah et al., 2019)

Dexiamian 1

SPAN 837, 06K485, 06K486, FQMA

DAK-66/3, GC 555, Delta Diomand,
MS-30/1, Nieves, Nazilli M-503, Zeta 2,
NIAB 999, and Eva

Delcerro, Zeta 2, DAK 66/3, and Nazilli 87

Physiological Parameters (root, stem,
and leaf water contents, net photosyn-
thetic rate

Morphological parameters

Geometric mean productivity, drought
susceptibility index

Water use efficient

Drought stress in controlled condition

Drought stress in screen house
Drought stress in field condition

Drought stress in field condition

(Zou et al,, 2020)

(Mvula et al,, 2018)
(Sezener et al,, 2015)

(Baytar et al,, 2018)
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Conclusion

Development of drought tolerant genotypes is a major
challenge for the cotton breeders because of the com-
plex inheritance pattern of quantitative drought response
related traits and the difficulty in accurate measurement
of the polygenic trait. Omics approaches like genomics,
transcriptomics and proteomics have been extensively
used to investigate molecular regulatory networks in
cotton in response to drought stress. However, metabo-
lomics, phenomics, and epigenomics have been lag-
ging. The combination of GWAS with transcriptomics
and proteomics has been untilized as a powerful tool to
reveal regulatory network in drought tolerance and cot-
ton improvement. Meanwhile, the availability of online
cotton databases facilitate integrative analysis of omics
data.

Advanced multi-omics like genomics, transcriptomics,
proteomics together with precise and accurate phenotyp-
ing of drought related traits exploring the mechanisms
of cotton plant’s response to drought stress is limited
in laboratory setup so far, and has not been utilized in
breeding. With the improvement of omic technique and
data analytic tools, integration of conventional breeding
and omics-based breeding is an efficient route to develop
drought tolerant cultivars in the future.
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