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Abstract

Background: Manganese (Mn) is an essential microelement in cottonseeds, which is usually determined by the
techniques relied on hazardous reagents and complex pretreatment procedures. Therefore a rapid, low-cost, and
reagent-free analytical way is demanded to substitute the traditional analytical method.

Results: The Mn content in cottonseed meal was investigated by near-infrared spectroscopy (NIRS) and chemometrics
techniques. Standard normal variate (SNV) combined with first derivatives (FD) was the optimal spectra pre-treatment
method. Monte Carlo uninformative variable elimination (MCUVE) and successive projections algorithm method (SPA)
were employed to extract the informative variables from the full NIR spectra. The linear and nonlinear calibration
models for cottonseed Mn content were developed. Finally, the optimal model for cottonseed Mn content was
obtained by MCUVE-SPA-LSSVM, with root mean squares error of prediction (RMSEP) of 1.994 6, coefficient of
determination (R2) of 0.949 3, and the residual predictive deviation (RPD) of 4.370 5, respectively.

Conclusions: The MCUVE-SPA-LSSVM model is accuracy enough to measure the Mn content in cottonseed meal,
which can be used as an alternative way to substitute for traditional analytical method.
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Introduction
Manganese (Mn) is an essential microelement for plant
growth. For example, Mn participated in the water-
splitting system of photosystem II (PSII) and provided
electrons necessary for photosynthetic electron trans-
port. In addition, a group of four Mn atoms (Mn cluster)
was associated with the oxygen-evolving complex (OEC)
bound to the reaction center protein (D1) of PSII in
water photolysis (Goussias et al. 2002). Mn also
intervened in activating enzyme-catalyzed reactions, in-
cluding phosphorylation, decarboxylation, reduction,
and hydrolysis reaction. These reactions could affect the
processes such as respiration, amino acid synthesis,
lignin biosynthesis and the level of hormones in plants
(Millaleo et al. 2010). Although Mn is an important

inorganic element for plant growth and development,
plant disorders would be happen if soils contained ex-
tremely high amounts of Mn or acid soils had moderate
Mn content (Robinson 1919). For example, Mn toxicity
could cause the crinkle leaf disease of cotton.
Cottonseed is an important by-product of cotton produc-

tion, which has high contents of protein (27.83% ~ 45.60%)
and oil (28.24% ~ 44.05%). Cottonseed could be used as
livestock food and edible oil. However, high Mn contents
in the cottonseeds will restrict the utilization of
cottonseed, as ingestion of excess Mn can cause toxic ef-
fects for human or animals. For example, exposure to Mn
in childhood at concentrations exceeding the homeostatic
range can cause a neurotoxic syndrome that affects dopa-
mine balance and behavior control (Ericson et al. 2007;
Zoni and Lucchini 2013).
Although Mn is one of the most important microele-

ments for cotton growth, high Mn content will be a lim-
iting factor of the utilization of cottonseed, especially
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when cottonseed is used as feed for livestock. Therefore,
it’s very important to measure the cottonseed Mn
content. Cottonseed Mn content is generally determined
by atomic absorption spectrometry (AAS), inductively
coupled plasma optical emission spectrometry (ICP-
OES), or inductively coupled plasma mass spectrometry
(ICP-MS). However, due to relying on hazardous re-
agents and complex pretreatment procedures of samples,
these methods are quite expensive and time-consuming.
In contrast, near-infrared spectroscopy (NIRS) is a rapid,
non-destructive, pretreatment-simple, low-cost, effective,
and reagent-free analytical method, which can supply an
alternative way to substitute the traditional analytical
method to measure cottonseed Mn content.
Theoretically, there were no absorption bands for inor-

ganic elements in the NIR region. However, inorganic
elements could chelate with organic compounds, so it
indirectly reflected in near-infrared spectra (Kumagai et
al. 2013; Chen et al. 2010). Recently, NIRS has been ap-
plied to analyze inorganic elements concentration in dif-
ferent plant species, including cadmium and arsenic in
rice (Kumagai et al. 2013; Font et al. 2005; Zhu et al.
2015), arsenic and lead in red paprika (Moros et al.
2008). In addition, inorganic elements concentration in
sediment (Xia et al. 2007), soil (Moros et al. 2009), and
water samples (Ning et al. 2012; Kleinebecker et al. 2013)
were also determined by NIRS. However, no reports have
been published on the usage of NIRS technique to meas-
ure the microelements content in cottonseed meal.
In order to set up a fast and accurate method to meas-

ure cottonseed Mn content, partial least squares (PLS)
and least-squares support vector machine (LSSVM) re-
gression are used to develop the calibration models. In
addition, the variable selection methods, including Monte
Carlo uninformation variables elimination (MCUVE) and
successive projections algorithm (SPA), are employed to
improve the performance of models.

Materials and methods
Plant materials
A total of 288 cottonseed samples were collected from 10
cultivar regional experiments located in Yangtze River cotton
production region of China in 2013, including Hangzhou
(30°16′N, 120°09′E), Jiangshan (28°74′N, 118°61′E), Jinhua
(29°12′N, 119°64′E), Lixian (29°65′N, 111°75′E), Wuhu
(30°52′N, 114°31′E), Wulin (29°05′N, 111°69′E), Yancheng
(33°38′N, 120°13′E), Jiujiang (29°71′N, 115°97′E), Yueyang
(29°37′N, 113°09′E), and Hefei (31°86′N, 117°27′E). There
were 11 cultivars or lines in each experiment with a ran-
domized block design and three replicates. All agronomic
managements, including weed and disease control, were
the same as those of local cotton production. The cotton-
seeds materials were sampled at harvest, then stored at
4 °C for Mn analysis.

Mn measurement
Each sample was ground by an auto milling-machine
and passed through a 0.4 mm screen. A total of 0.40 g of
cottonseed powder was measured and digested at 80 °C
for 30 min in a tube containing 6 mL HNO3 and 0.2 mL
H2O2 (30%, v/v). The tubes were then digested in a
microwave digestion oven (Microwave 3000, Anton paar,
Austria) for another 90 min. The element concentration
in the digested solution was determined by inductively
coupled plasma-mass spectrometer (Elan DCR-e Peki-
nElmer USA) after appropriate dilution. All reagents
were of the highest purity and all solutions were pre-
pared in ultrapure water produced by Millipore Milli-Q
system (Bedford, MA, USA) with a resistivity of 18.2
MƱ·cm.

NIRS measurement
About 3.5 g cottonseed meal was loaded in a circle sam-
ple cup (35 mm in diameter and 18mm in depth) and
pressed moderately to obtain similar packing density. In
order to get an ideal working condition for NIR ma-
chine, the temperature and humidity were strictly con-
trolled within 25 °C and 40%, respectively. The loading
time was controlled as fast as possible to avoid excessive
moisture absorption. The spectra were collected in the
wavelength range of 1 100~2 498 nm, and were recorded
as log (1/R) at 2 nm interval using the WinISI II
(InfraSoft International, USA) software. Each sample was
loaded and scanned 4 times, and the average spectrum
was used for NIR analysis.

Spectral data analysis
The raw spectral data needed to be preprocessed be-
cause lots of systematic noises and slope-background in-
formation existed in NIR original spectral (Li et al.
2012). In our experiment, different pre-processing
methods were used to increase the relationship between
the chemical composition and spectral signal, including
Savitzky-Golay (SG) smoothing, the first or second de-
rivative (FD, SD; the value of polynomial and the num-
ber of points in the window were 1 and 5, respectively),
multiplicative scatter correction (MSC), linear baseline
correction, spectroscopic transformation (ST), standard
normal variate (SNV), and some of their combinations.
All these pre-processing methods were carried out
according to the instructions of the Unscrambler V9.7
(CAMO PROCESS AS, Oslo, Norway). All chemometric
algorithms were performed in Matlab (Version 7.12.0.635,
the MathWorks. Inc. US) under Windows 7.

Results
Reference data and reflectance spectra analysis
In modeling, 288 samples were divided into two sets
with a ratio of 3:1 according to Kennard-Stone algorithm
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based on Euclidean distances (Kennard and Stone 1969).
Seventy-two samples consisted of the validation set for the
prediction, and 216 samples formed calibration set for
modeling (Table 1). The cottonseed Mn content in
calibration set ranged from 10.251 9 to 48.991 8 mg·kg− 1,
and that of validation sets ranged from 11.031 6 to
41.392 2 mg·kg− 1. The range of calibration set covered
the whole range of validation set and the value of RSD
varied obviously in these two sets (Table 1), which indi-
cated that Mn distribution in these two sets was appropri-
ate and had the ability to develop reliable calibration
equations (Bao et al. 2007). The calibration model was
checked by full cross-validation (Gómez et al. 2006). In
addition, the validation set, an external test set, was also
used to validate the actual prediction ability of calibration
model (Esteban-Díez et al. 2007).
In our study, the regression modeling technique and

different pre-treatment methods were used to optimize
NIR spectra data for cottonseed meal. Compared with
the raw data as a control, SNV, MSC, AN, TB, FD and
ST pre-treatment methods decreased the value of root
mean square error (RMSE), while increased the value of
coefficient of determination (R2) (Table 2), which indi-
cated that these methods improved the quality of regres-
sion model for cottonseed Mn content. The optimal
spectra preprocessing method was obtained by the com-
bination SVN with FD, with a lowest RMSE and highest
R2 values (Table 2).
The raw spectra revealed three prominent absorption

bands at 1 500, 1 750, and 1 950 nm, as well as four small
absorption bands at 1 200, 2 050, 2 300, and 2 350 nm
(Fig. 1a). However, the reflectance spectra changed signifi-
cantly after using the optimal preprocessing method
(Fig. 1a, b). There were also three prominent absorption
bands, but the number of small absorption bands reached
eight (Fig. 1b), and all absorption bands became much
sharper and clearer than that of raw spectra, which indi-
cated that the optimal spectra pre-processing method
improved the spectra quality for modeling.

Development of full-spectra PLS and LSSVM model
Before developing the full-spectra PLS model, the latent
variables (LVs) should be optimized. In this study, the

optimal number of LVs for PLS was determined by pre-
diction residual error sum of squares (PRESS) value
from the one-out cross validation procedure. The PRESS
value descended greatly with the increasing of LVs, to
the lowest level at LVs = 10, and then slowly increased
when LVs were > 10 (Additional file 1: Figure S1). There-
fore, LVs = 10 was considered as the optimal value for
PLS model. The predictive results of PLS model are
shown in Table 3.
The parameters, γ and ɤ2, should be optimized in the

radius basis function (RBF) kernel function to develop
the full-spectra LSSVM model. In this study, genetic al-
gorithm (GA) approach and tenfold cross-validation
were applied for global optimization of these two
parameters, and the optimal values of γ and ɤ2 were
2.060 1 and 2.255 1, respectively. Compared with the full-
spectra PLS model, the values of R2 and RPD were
increased, while that of RMSEC, RMSEP, and RMSECV
were decreased in full-spectra LSSVM model (Table 3),
which indicated that non-linear regression model
(LSSVM) was superior to linear regression model (PLS) to
develop the calibration model for cottonseed Mn content.

Development of LSSVM model using variables selection
methods
There were 700 variables in the original spectra of cotton-
seed meal and most of them were typically consisted of
broad, weak, nonspecific, and extensively overlapped bands
(Blanco et al. 1994). In order to improve the predictive
precision and eliminate the influence of uninformative var-
iables on the robust of LSSVM model, Monte Carlo unin-
formative variable elimination (MCUVE) and successive
projections algorithm (SPA) method were proposed for

Table 1 The statistic of Mn content of sample in two sets by
KS algorithm

Subsets Sample
number

Mn contents / (mg·kg-1) SD RSD / %

Range Mean

Total 288 10.251 9 ~ 48.991 8 19.583 1 8.328 4 42.53

Calibration
set

216 10.251 9 ~ 48.991 8 18.709 5 8.026 7 42.90

Prediction
set

72 11.031 6 ~ 41.392 2 22.204 0 8.717 4 39.26

SD standard deviation, RSD relative standard deviation

Table 2 Evaluation of different pre-treatment methods for Mn
contents in cottonseed meal

Pre-treatment RMSE R2

Raw data 3.219 4 0.851 1

SNV 3.167 5 0.855 9

MSC 3.167 9 0.855 8

AN 3.141 9 0.858 2

FD 2.938 4 0.876 0

SD 4.156 0 0.751 9

TB 3.178 2 0.854 9

SG 3.223 7 0.850 7

ST 3.130 3 0.859 2

SG + FD 3.010 3 0.869 8

SNV + FD 2.901 8 0.879 0

SNV + SG 3.170 9 0.855 5

SNV standard normal variate, MSC multiplicative scatter correction, AN area
normalize, FD first derivatives, SD Second derivatives, TB transform baseline,
SG Savitzky-Golay smoothing, ST spectroscopic transformation, RMSE root
mean square error, R2 prediction coefficient of determination
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variable selection. The stability of each variable in the
wavelength from 1 100 to 2 498 nm was evaluated by
MCUVE method (Fig. 2a). The stability of any variable be-
tween the dot lines would be identified as uninformative
variable and should be eliminated. The root mean square
error of cross validation (RMSECV) value changed relied
on the cutoff value and the minimal RMSECV value could
get the optimal cutoff value (Fig. 2b). The optimal cutoff
value was set as 1.2, then 233 variables were selected by
MCUVE to establish MCUVE-LSSVM model, which were
given in Table 3. In order to further optimize the MCUVE-
LSSVM model, SPA method was used to reduce the num-
ber of uninformative variables further. Finally, 49 variables
were obtained to develop the MCUVE-SPA-LSSVM
model. The predictive results of MCUVE-SPA-LSSVM
model were shown in Table 3.

Comparison of accuracy of four kinds of regression
models
There were some important criteria to evaluate the per-
formance of regression models, such as the coefficient of
determination (R2) between the measured and predicted
parameters, the residual predictive deviation (RPD)
which was calculated as the ratio between the SD of

reference value and the standard error of cross-
validation (SECV). RPD was indicative of the usefulness
of the calibration model; if the ratio exceeded 3, the cali-
bration model was excellent, whereas the ratio below 2,
its applicability was limited (Rosales et al. 2011).
RMSECV and the root mean square error of prediction
(RMSEP) were other two indexes. The model with a low
RMSECV and RMSEP, and a high RPD and R2 values
was considered as a good one, and a good model had a
reliable ability to predict the chemical composition
(Arana et al. 2005).
Four kinds of regression models, namely PLS, LSSVM,

MCUVE-LSSVM, and MCUVE-SPA-LSSVM were built
in our study. The four calibration models were set for the
same optimal parameters, and the criteria to evaluate the
performance of different regression models were shown in
Table 3. It revealed that LSSVM model had better per-
formance than PLS model in measurement of cottonseed
Mn content. While MCUVE-LSSVM model with 233 vari-
ables had better quality than the full spectra LSSSVM
model, as the values of R2 and RPD were increased, while
the RMSEP and RMSECV values were decreased. Further-
more, the MCUVE-SPA-LSSVM model had the best pre-
diction ability, as only 49 useful variables were selected to

Fig. 1 The NIR spectra of cottonseed meal. a The original spectra. b The spectra after pretreated by SNV combined with first derivatives

Table 3 The performance of four kinds of regression models

Models Varialbes Calibration Validation RPD RMSECV

Num R2
c RMSEC Num R2

v RMSEP

PLS 700 216 0.894 7 2.598 3 72 0.926 9 2.438 7 3.574 6 3.171 9

LSSVM 700 216 0.984 9 1.001 7 72 0.944 1 2.108 4 4.134 7 2.491 0

MCUVE-LSSVM 233 216 0.976 3 1.242 0 72 0.948 6 2.010 8 4.335 4 2.309 1

MCUVE-SPA-LSSVM 49 216 0.972 9 1.330 8 72 0.949 3 1.994 6 4.370 5 2.101 3

Num Number of samples used to perform the calibration and validation, R2
c Coefficient of determination in calibration, R2

v Coefficient of determination in
calibration, RMSEC The root mean square error of calibration, RMSEP The root mean square error of prediction, RPD The residual predictive deviation, RMSECV The
root mean square error of cross-valid
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develop the calibration model (Fig. 3) and 651 uninforma-
tive variables were eliminated by MCUVE-SPA method.

Discussion
In present work, the full-spectra PLS and LSSVM algo-
rithm were implemented to build regression models for
cottonseed Mn content. Compared with full-spectra PLS
model, the values of R2 and RPD were increased, while
the values of RMSEC, RESEP and RMSECV were de-
creased in full-spectra LSSVM model (Table 3), which

indicated that nonlinear full-spectra LSSVM model was
superior to classical linear full-spectra PLS model to
build the calibration model for cottonseed Mn content.
Since not all of the variables were related to cottonseed
Mn in the original spectra, the variables selection
methods, including MCUVE and SPA, were used to
eliminate the uninformative variables. Finally, 49
informative variables were selected to build the MCUVE-
SPA-LSSVM model (Fig. 3). The scatter plot of the correl-
ation between the reference and predicted values from

Fig. 2 Variables selection in Mn NIR spectral modeling. a The stability distribution of each variable by MCUVE method. The two dotted lines
indicate the lower and upper cutoff values, respectively. b The trend of RMSECV with the descending of the cutoff value based on MCUVE

Fig. 3 Variables selected by MCUVE-SPA method. The red lines indicate variables selected by MCUVE-SPA method and a total of 49 variables
were selected to develop the calibration model
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MCUVE-SPA-LSSVM model for calibration and predic-
tion sets was shown in Fig. 4. The samples distribution in
both calibration and prediction set were near the diagonal
line, which suggested that MCUVE-SPA-LSSVM model
for cottonseed Mn had excellent correlation between pre-
dicted and reference values. Theoretically, there were no
direct absorption bands for inorganic Mn in cottonseed,
while the calibration model of Mn was accurate to deter-
minate cottonseed Mn content (Fig. 4; Table 3), which in-
dicated that Mn could be chelated with some substances
in cottonseed, from which the absorption bands of Mn
was indirectly reflected in near-infrared spectroscopy.
In order to know which kinds of substances could be

chelated with Mn in cottonseed meal, we try to analyze
the 49 informative variables selected in MCUVE-SPA-
LSSVM model. The results showed that the wavelength of
these selected variables were mainly concentrated at
1 110, 1 118, 1 174, 1 196, 1 240, 1 244, 1 248, and 1 278
nm, as well as some variables at 1 306 ~ 1 386 nm, 1 400
~ 1 476 nm, and 1 506 ~ 1 566 nm (Fig. 3). It was reported
that wavelength between 1 100 ~ 1 672 nm was resulted
from reduced intensity of the water bangs with the in-
creased total protein contents (Hacisalihoglu et al. 2009).
As we know, cottonseed is rich in proteins and oils. In
addition, proteins are complex nutritional parameters in-
cluding many chemical bonds such as C-H, O-H, N-H
and S-H, which are the four main types of bands in or-
ganic compounds. These bonds have strong absorbance in
near-infrared region (Zhu et al. 2015), and may be spe-
cially related to cottonseed Mn content. This may give an

explanation of why inorganic Mn content could be de-
tected by NIRS technique. However, which kinds of or-
ganic compounds can chelate with Mn in cottonseed is
still unknown. We need to isolate the target organic com-
pounds related to Mn in further study.

Conclusions
The calibration and validation statistics obtained in the
current work showed the potential of NIRS to predict mi-
croelement Mn content in cottonseed meal. The best re-
sults were obtained by using MCUVE-SPA LSSVM
method, with RMSEP of 1.994 6, R2 of 0.949 3, and RPD of
4.370 5, respectively. This model was accurate enough to
measure the cottonseed Mn content, and supplied an alter-
native way to substitute for traditional analytical method.

Additional file

Additional file 1: Figure S1. Variation of prediction residual error sum
of squares value (PRESS value) with different latent variables (LVs) for Mn
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