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Abstract

Background: Pectin is a key substance involved in cell wall development, and the galacturonosyltransferases
(GAUTSs) gene family is a critical participant in the pectin synthesis pathway. Systematic and comprehensive
research on GAUTs has not been performed in cotton. Analysis of the evolution and expression patterns of the
GAUT gene family in different cotton species is needed to increase knowledge of the function of pectin in cotton
fiber development.

Results: In this study, we have identified 131 GAUT genes in the genomes of four Gossypium species (G. raimondii,
G. barbadense, G. hirsutum, and G. arboreum), and classified them as GAUT-A, GAUT-B and GAUT-C, which coding
probable galacturonosyltransferases. Among them, the GAUT genes encode proteins GAUT1 to GAUT15. All GAUT
proteins except for GAUT7 contain a conserved glycosy! transferase family 8 domain (H-DN-A-SW-S-V-H-T-F). The
conserved sequence of GAUT7 is PLN (phospholamban) 02769 domain. According to cis-elemet analysis, GAUT
genes transcript levels may be regulated by hormones such as JA, GA, SA, ABA, Me-JA, and IAA. The evolution and
transcription patterns of the GAUT gene family in different cotton species and the transcript levels in upland

cotton lines with different fiber strength were analyzed. Peak transcript level of GhGAUT genes have been observed
before 15 DPA. In the six materials with high fiber strength, the transcription of GhGAUT genes were concentrated
from 10 to 15 DPA; while the highest transcript levels in low fiber strength materials were detected between 5 and
10 DPA. These results lays the foundation for future research on gene function during cotton fiber development.
Conclusions: The GAUT gene family may affect cotton fiber development, including fiber elongation and fiber
thickening. In the low strength fiber lines, GAUTs mainly participate in fiber elongation, whereas their major effect
on cotton with high strength fiber is related to both elongation and thickening.
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Background

Cotton, the world’s most important economic fiber crop,
is tightly connected to the ecomonic development and
human livelihoods. Cotton fiber formation and develop-
ment is an important factor in cotton breeding (Fan
2013). The cell wall structure of cotton fiber is com-
posed of pectin and cellulose. The synthesis and decom-
position of pectin are therefore important factors
affecting cotton fiber formation (Basra et al. 1984).

Pectin, which plays a critical role in plant growth and
development, is mainly found in the primary and middle
layers of plant cell walls, and participates in the forma-
tion of plant tissue structure, biotic and abiotic stress
processes. Pectin biosynthesis is estimated to require at
least 67 transferases including glycosyl-, methyl-, and
acetyltransferases (Mohnen et al. 2008). Pectin is also
the most complex cell wall polysaccharide (Scheller
et al. 2007). The sugar nucleotide reverse transporter
transports the sugar nucleotide to the Golgi apparatus
under the action of a specific glycosyltransferase. The
glycosyl group is then cleaved and attached to the
elongating polysaccharide chain to form pectin. The
synthesis of pectin involves at least 53 different glyco-
syltransferases localized on the Golgi apparatus (Rid-
ley et al. 2001).

Only two glycosyltransferase-coding genes are rec-
ognized on the basis of previous research in Arabi-
dopsis:  homogalacturonan (HG)  synthase and
glucuronyltransferase involved in rhamnogalacturona-
nll (RG II) synthesis (Willats et al. 2006). Compared
with currently cataloged HG pectin multimerism in
plants, much researches have been performed on
galacturonyltransferase (HG: a-1,4-D-galacturonosyl-
transferase, HG:GalAT). The gene encoding HG:
GalAT (EC 2.4.1.43) is named galacturonosyltransfer-
ase (GAUT) (Mohnen et al. 2008;Willats et al. 2006).

Galacturonosyltransferases (GAUTs), which are partly
responsible for pectin biosynthesis, are glycosyltransfer-
ase (Harholt et al. 2010). According to evolutionary ana-
lysis, they constitute glycosyltransferase family 8 (GTS8s).
GT8 consists of three separate protein classes, classes I
and II contain mostly eukaryotic proteins, while almost
the entire class III consists of bacterial proteins (Yin et al.
2010a, b). Plant cell-wall-related proteins, including
GAUT and GAUT-like (GATL) proteins, are all located
in class I (Sterling et al. 2006). The GAUT gene family
was first identified by Blast analysis of the Arabidopsis
genome, on the basis of structural similarity, 15 GAUT
and GATL family members have been classified as fol-
lows, GAUT1-GAUT7 in GAUT-A; GAUTS8-GAUT11
in GAUT-B; and GAUT12-GAUT15 in GAUT-C. All
GATL family members are clustered together and con-
stitute a clade closely related to GAUT15. Experiments
have shown that GAUT1 is equivalent to HG:GalAT,
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GalAT and the GAUT1-related gene family provides the
genetic and biochemical tools required to study the
function of these genes in pectin synthesis (Sterling et al.
2006). GAUT1 also belongs to GT8, and the GAUT1-
related superfamily also contains 10 GAUT-like genes
(Cantarel et al. 2008). The gautl mutation can cause
plant dwarfing, reduce cell adhesion and a 25% reduc-
tion in GalA content of leaves (Orfila et al. 2005). The
GAUT1-GAUT7 core complex is held together by one
or more covalent disulfide bonds and other noncovalent
interaction. GAUT1 is dependent on GAUT7 and re-
mains in the Golgi apparatus, where it is considered to
be a component of the HG:GalAT complex that partici-
pates in pectin synthesis (Atmodjo et al. 2011). The
gaut8 mutation can reduce the adhesion of epidermal
cells of the young leaves and the marginal cells of the
roots, thereby leading to plant dwarfing (Durand et al
2009). The gautll mutation can reduce the thickness of
the seed mucus (Caffall et al. 2009). In the gautl3-
gautl4 double mutant, the distribution of pectin in the
pollen tube wall is altered, which results in serious de-
fects in pollen tube shape and growth (Wang et al.
2013).

The GAUT family is large, and more than 67 mem-
bers have been found in tomato (Solanum lycopersi-
cum). The GAUT family member with the highest
expressed level in tomato is gaut4 (Godoy et al.
2013). In the gaut4 mutant, pectin structure is chan-
ged significantly, and other fruit traits, such as starch
content, fruit yield, and single fruit quality, are also
altered, consistent with an observed increase in firm-
ness. In addition, harvest index is significantly de-
creased because of a reduction in fruit weight and
number (Godoy et al. 2013). Hyodo et al. (2013) dem-
onstrated that the gautl gene had higher transcription
level during fruit development, especially in the fruit
epidermis, while gautl showed higher expression
level in the mesocarp, endocarp, septum, locular tis-
sue, and nucleus after the fruit enters maturity.

To improve the quality of high fiber strength cotton
materials, we have focused on cotton fiber development.
Zhang et al. (2017) used recombinant inbred lines (RILs)
to identify 16 stable quantitative trait loci (QTLs) related
to fiber strength. In addition, Zou et al. (2019) identified
3 364 candidate genes related to cotton fiber strength,
and analyzed the differences in fiber development (5 to
30 DPA) using two extremely different materials in a
RIL population. A total of 363 differentially expressed
genes (DEGs) comprising 4, 75, 39, 62, and 183 genes at
10, 15, 20, 25, and 30 DPA, respectively, were detected.
Among them, 228 (62.6%) genes were upregulated in
high-strength materials, while Gh_A07G1907 (homolo-
gous to GAUT6) was downregulated at 15 DPA but up-
regulated at 25 DPA.
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As discussed aboved, the GAUT gene family has been
studied in plants such as Arabidopsis and tomato etc.,
but no systematic investigation has been carried out in
cotton. In the current study, we systematically and com-
prehensively analyzed the chromosomal location, struc-
tures, and phylogenetic relationships of the GAUT gene
family in different Gossypium species. We also focused
on the transcription of these genes during the fiber
development.

Results

Identification of cotton GAUT genes

Detailed phylogenetic analyses have divided GT8 pro-
teins into two distantly related clades: 1) the GAUT1-
related family, including the GAUT and GATL proteins,
known as galacturonosyltransferase proteins, and 2) a
group including plant glycogen protein-like starch
starters (PGSIPs) and galactitol synthases (GolSs) (Yin
et al. 2010a, b). According to the Pfam database and a
bioinformatics analysis, all inferred proteins have a
Glyco_transf_8-like domain (PF01501), which indicates
that the corresponding genes belong to the GAUT gene
family (Kikuchi et al. 2003). To identify the GAUT gene
in Gossypium species, we identified 187 GAUT genes
from eight species (Fig. S1), including 131 genes from
the following species: G. hirsutum (41 genes), G. barba-
dense (42 genes), G. arboreum (25 genes) and G. raimon-
dii (23 genes). The length of coding regions in the
GAUT gene family ranged from 1 098 to 4 899 bp, and
the encoded proteins comprised of 365 to 1 632 amino
acids residues. The length of 32 GAUT genes was less
than 3 000 bp; 88 genes had lengths of 3 000 to 7 000
bp, while the remaining 11 were longer than 7 000 bp
(Table 1).

Phylogenetic analysis and classification of the GAUT gene
family in cotton

Using published genome sequence data from eight spe-
cies, we determined the phylogenetic relationships of
GAUT gene family members among multiple species. In
a previous study (Sterling et al. 2006), three types of pro-
tein sequences, GAUT-A, GAUT-B, and GAUT-C, were
found by multiple sequence alignment of the 187 GAUT
proteins of these eight species to Arabidopsis homologs
(Fig. 1a). In the present study, we analyzed the GAUT
genes of four cotton species, thereby classifying 62 pro-
teins into GAUT-A, 38 into GAUT-B, and 31 into
GAUT-C (Fig. 1b). In addition, GKA07G1907 was a dif-
ferentially expressed gene in the QTL which was related
to fiber strength. It was a homologous gene to
AtGAUTS6. And genes homologous to AtGAUT6 had the
most number in Gossypium species (Zou et al. 2019).
We found 16 AtGAUTI13 homologs, 14 genes were hom-
ologous to each of AtGAUT7, AtGAUTY9, and
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AtGAUTI1I, and 11 genes were homologous to each of
AtGAUT2 and AtGAUTI2. The remaining genes had
fewer than 10 homologs. No gene homologous to
AtGAUT14 were detected in any of the four cotton spe-
cies, and no AtGAUTS homolog was identified in G. hir-
sutum. Only one homolog of each of AtGAUTS and
AtGAUTI10 were detected, namely, GrGAUTI8 and
GhGAUTO03, respectively. Four homologs each of
AtGAUT2, 4, 6, 7, 9, 12, and 13, three homologs each of
AtGAUTS8 and AtGAUTII, and two homologous genes
to each of AtGAUTI, and AtGAUT3 were discovered in
G. hirsutum.

Analysis of conserved motif and GAUT protein structures
The following motif is conserved in 15 Arabidopsis
GAUT protein and their orthologues in cotton: H-DN-
A-SVV-S-V-H-T-F (H-x (2)-[ILV]-x-[ST]-D-N-[IV]-[IL]-
A-[ASTV]-S-V-V-[AIV]-x-S-x-[AIV]-x  (2)-[AS]-x (2)-
[PS]-x (3)-V-[FL]-H-[ILV]-[ILV]-T-[DN]-x (2)-[NST]-x
(2)-[AGP]-[IM]-x (3)-F) (Sterling et al, 2006). The
GAUT gene family encode proteins with a molecular
mass between 61 and 78 kDa (Sterling et al. 2006; Godoy
et al. 2013). Consistent with topological predictions,
most GAUT proteins can encode a type II membrane
protein containing a putative transmemberance domain
in its hypervariable N-terminal region. Among the
GAUT proteins analyzed in our study, three GAUT pro-
teins (GAUT 3, 4, and 5) which belongeding to GAUT-
A contained an N-terminal signal peptide rather than a
transmemberance domain. The only GAUT gene family
members predicted to have no N-terminal transmember-
ance domain or signal peptide in cotton were GAUT2
proteins (Fig. 2b). We also found some GAUT1, GAUT3
and GAUT11 proteins with the above-mentioned char-
acteristics. Among 14 GAUT7 proteins belonging to
GAUT-A group in four Gossypium species (Table 1), the
proteins encoded by 10 genes homologous to GAUT?7
contained the conserved PLN02769 domain (Fig. 2b),
which was assigned to the category of “Probable Galac-
turonosyltransferase” (https://www.ncbi.nlm.nih.gov/
proteinclusters/?term=PLN02769). ©~ The  remaining
GAUT family members contained a conserved glycosyl
transferase family 8 domain. The predicted motifs of
each member are shown in Fig. 2C, and the specific
structural information is given in Fig. S2.

Analysis of collinearity and repeating elements in the
GAUT gene

According to the results of MCScan analysis, there was
no tandem repeat element present in the GAUT gene
family in Gossypium. In G. hirsutum, GhGAUTO01 and
GhGAUTI9, GhGAUTIS and GhGAUT34, GhGAUTI6
and GhGAUT36, GhGAUT17 and GhGAUT38, and
GhGAUTI8 and GhGAUT39 were homologous to the
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Fig. 1 Phylogenetic tree of the galacturonosyltransferase (GAUT) gene familya. Neighbor-joining phylogenetic tree of galacturonosyltransferase
(GAUT) genes from eight species. b: Neighbor-joining phylogenetic tree of galacturonosyltransferase (GAUT) family form the four cotton species.
They comparised three types of protein sequences by multiple sequence alignment of the 187 GAUT proteins for eight species. From the four

cotton species, GAUT gene family were classified into GAUT-A (62 proteins), GAUT-B (38 proteins), and GAUT-C (31 proteins)

AtGAUT3, AtGAUTI1, AtGAUTI12, and AtGAUT13, re-
spectively, and were also segment repeats. Genes in dip-
loid Gossypium species corresponding to the above
repeated genes were shown in Fig. 3. According to their
relative order in Gossypium, GAUT genes were catego-
rized into five groups (1 to 5). Only group 4 belongs to
GAUT-A, all other groups were members of GAUT-C.

Analysis of GAUTs transcription patterns

As determined by collinearity and repetitive element
analyses of the above homologous genes in combination
with transcriptome data from different fiber develop-
mental stages of diploid Gossypium species, GaGAUTO02
had the highest transcript level at 15 DPA but almost no
transcription during other periods. Other members of
group 1 (Fig. 3) were also barely transcribed in G. rai-
mondii and tetraploid cotton, with fragments per kilo-
base of transcript per million fragments mapped (FPKM)
values of less than 2.0. In group 2, GhGAUTI15 and
GhGAUT34 had the highest transcript level during the
late stage (20 to 25 DPA) of fiber development (Fig. 4).
Group 3 members GhGAUTI6, GhGAUTS3S,
GrGAUT14, and GaGAUT22 were not transcribed at all
during the fiber developmental period. Among group 4
genes, GhGAUT17 and GhGAUT38 had their highest
transcript level during fiber developmental from 5 to 10
DPA, and GrGAUT22 and GaGAUT24 had the peak
transcript level at 0 and 15 DPA, respectively. All mem-
bers of group 5 except for GaGAUT25 were transcribed
at 15 DPA, and the remaining genes had almost no

transcription during fiber development. In four cotton
species, six genes, namely GaGAUT08, GaGAUTI2,
GaGAUT13, GrGAUTO03, GrGAUT18, and GhGAUT2S,
had peak FPKM values greater than 40. The expression
peak of these six genes all occurred before 15 DPA,
which suggested that the GAUT gene family play a im-
portant role in early cotton fiber development.

We selected a RIL population containing high-strength
fiber and low-strength fiber lines for quantitative real
time polymerase chain reaction (qRT-PCR) analysis
(Wang et al. 2014). For this analysis, we selected
GhGAUT08 (Gh_A07G1907) (Zou et al. 2019) and
GhGAUT25 which belonged to GAUT-A, and
GhGAUTIO, GhGAUTI11 and GhGAUT29
which belonged to GAUT-B. And all had FPKM values
greater than 10 (Tables 2,3,4, and 5). The qRT-PCR
analysis revealed that the GAUT genes had an im-
portant influence on fiber development before 15
DPA. From 5 to 30 DPA, the overall transcript levels
of GhGAUTO08 and GhGAUTIO were higher in high
fiber-strength materials than those in low strength
materials. At 5 DPA, the transcript levels of
GhGAUTI1 and GhGAUT29 were higher in low
fiber-strength materials than those in high strength
materials, with the opposite trend from 10 to 30
DPA. The transcript level of GhGAUT25 was higher
in low fiber-strength materials than high strength ma-
terials from 5 to 10 DPA, with the reverse pattern
after 15 DPA. In six high strength materials, peak
GAUT expression was from 10 to 15 DPA (Fig. 5),
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whereas the period of highest expression in six low-
strength materials was 5 to 10 DPA (Fig. 5).

Since the GAUT gene family affect the synthesis of pec-
tin, we measured the pectin content of different materials.
The results showed that the peak pectin content of high
strength fiber materials appeared at 15 DPA, while the
low strength materials appeared at 10 DPA (Fig. 6). This
result was similar to the pattern of gene transcription.

Analysis of the cis-elements in the promoter regions
GAUT genes

To investigate the potential reasons for different expres-
sion patterns among GAUT genes, we analyzed the pro-
moter region of the GAUT gene family in upland
cotton. This analysis was performed because cis-ele-
ments (Fig. 7) can affect gene expression (Higo et al.
1999). The 32 cis-elements were detected in the
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Fig. 3 Collinearity of galacturonosyltransferase genes in G. arboretum, G. hirsutum and G. raimondii

promoter region of the 41 GAUT genes in upland cot-
ton. The 32 cis-elements contained motifs that belonged
to the regulatory sequences that responsive to anaerobi-
city, abiotic stress and hormone signaling. CGTCA and
TGACG elements are associated with responsiveness to
methyl jasmonate (Me-JA) (Basyuni et al. 2018), while
the GARE-motif (TCTGTTG) and P-box (CCTTTTG)
are related to gibberellin (GA) (Porto et al. 2014). The
TCA-element (CCATCTTTTT) is a salicylic acid (SA)
responsive element (Herrera-Vasquez et al. 2015).
AuxRR-core (GGTCCAT) and the TGA-element
(AACGACQ) are related to the responsiveness to auxin
(Herrera-Vasquez et al. 2015), and the ABRE-motif
(ACGTGQ) is associated with the abscisic acid (ABA) re-
sponse (Mishra et al. 2014). The ARE-motif (AAACCA)
is related to the anaerobic environment, while the LTR-
motif (CCGAAA) participates in response to low
temperature (Chen et al. 2018). Finally, the TC-rich re-
peats (ATTCTCTAAC) is the response element associ-
ated with stress (Wei et al. 2009).

Transcription analysis of prominent fiber-expressed genes
under abiotic stress and phytohormone treatments

For a more in-depth study of GhAGAUTs transcript levels
induced by abiotic stress, the transcription patterns of
five GhGAUT genes in cotton with NaCl, PEG, abscisic
acid (ABA), naphthylacetic acid (NAA), salicylic acid
(SA), and methyl jasmonate (MeJA) treatments were an-
alyzed by qRT-PCR (Fig. 8). We examined the effects of

various hormones on the transcription of the five
GhGAUT genes. We observed that within 1h after all
treatments, the relative transcript levels of these five
genes were rapidly increased and then decreased after
24h. The peak transcription levels of the up-
regulated gene came between 3h and 12h, except for
GhGAUTI11. GhGAUTI11 did not respond to the treat-
ment of three hormones ABA, SA, and MeJA.
GhGAUT29 responded to all stresses and hormone
treatments, and the detected transcript levels were
higher. GhGAUTO8 responded to ABA and SA treat-
ments with the higher transcript levels. GhGAUT25 also
responded to two stresses and four hormone treatments,
but the transcript levels were the highest under the
treatment of PEG and ABA, and the response peaks
came at 6h and 12h after treatments, respectively.
GhGAUTIO also responded to the treatments of ABA,
SA, and MeJA, with the peak transcript levels at 6 h, 12
h, and 12 h; the response levels to NACl, PEG and NAA
treatment was low at 3h and 6 h, respectively. These re-
sults indicated that after different hormone treatments,
different genes had different response times and re-
sponse patterns, which were closely related to their hor-
mone response elements and expression patterns.

Discussion

Phylogenetic analysis of the GAUT gene family
Researches on the GAUT gene family currently focused
on Arabidopsis (Sterling et al. 2006; Cantarel et al.
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Fig. 4 Heatmap of the galacturonosyltransferase gene transcript levels based on transcriptome analysis. a: galacturonosyltransferase gene
transcript levels during fiber development in G. arboreum (0 to 15 DPA). b: Galacturonosyltransferase gene transcript levels during fiber
development in G. raimondii (0 to 15 DPA). ¢: Galacturonosyltransferase gene transcript levels during fiber development in G. arboreum (10 to 28
DPA). d: Galacturonosyltransferase gene transcript levels in the root, stem, leaf, and fiber tissues (5 to 30 DPA) from G. hirsutum
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2008), tomato (Godoy et al. 2013; Vasco et al. 2011),
ramie (Chen et al. 2014), sweet cherry (Campoy et al.
2015), and the other species. Studies have also been car-
ried out in cotton, but systematically evolutionary

analysis has not yet been conducted. Among 131 GAUT
members in cotton, 20 are homologous to AtGAUT6; no
gene in cotton is homologous to AtGAUTI4, and no
AtGAUTS homolog was present in G. hirsutum.
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Gene model ID 0 DPA 3 DPA 6 DPA 10 DPA 15 DPA
Ga01G0140 GaGAUTO1 0.04 0.00 0.02 0.05 0.03
Ga01G0796 GaGAUT02 0.04 0.15 0.19 0.65 79.57
Ga03G0997 GaGAUT03 265 5.51 4.86 6.06 533
Ga04G0446 GaGAUTO4 17.91 1645 17.27 13.14 6.62
Ga04G1634 GaGAUTO5 643 9.64 577 6.85 9.92
Ga04G1718 GaGAUT06 540 8.04 3.06 533 401
Ga05G1886 GaGAUT07 11.15 13.59 843 7.89 17.68
Ga06G1924 GaGAUTO8 2044 39.23 49.70 2873 19.21
Ga07G2432 GaGAUT09 147 384 3.56 4.07 5.00
Ga07Gl617 GaGAUT10 365 8.38 567 341 282
Ga07G2025 GaGAUTT1 7.05 14.31 2329 16.95 17.30
Ga07G1793 GaGAUT12 97.22 104.53 i 122.70 59.66
Ga07G1005 GaGAUT13 29.80 39.13 75.55 40.56 39.00
Ga08G2216 GaGAUT14 0.60 0.15 0.31 0.12 0.31
Ga08G0724 GaGAUT15 0.00 0.00 003 0.00 0.03
Ga08G1537 GaGAUT16 16.38 21.55 18.07 15.19 1747
Ga09G2452 GaGAUT17 4.84 9.73 6.85 6.38 6.36
Ga09G0159 GaGAUT18 0.17 048 0.34 0.46 0.38
GallG2709 GaGAUT19 4.08 846 6.26 6.86 8.21
GallG3730 GaGAUT20 13.06 1067 12.06 8.77 9.09
GallG3192 GaGAUT21 4.77 8.87 10.25 7.52 1148
GallG3319 GaGAUT22 042 0.76 046 0.36 0.76
Gal2G2518 GaGAUT23 4.01 525 7.88 531 10.94
Gal3G0584 GaGAUT24 392 359 468 2.84 9.19
Gal3G1828 GaGAUT25 0.84 0.26 1.16 0.16 3.59

The GAUT gene family encodes galacturonosyltrans-
ferases involved in the synthesis of pectin, a compound
related to cell wall formation. The conserved domain of
the GAUT protein is H-DN-A-SVV-S-V-H-T-F. In to-
mato, GAUT1 protein had been predicted to be a mem-
brane protein with a single N-terminal transmembrane
helix and a major globular domain in the Golgi cavity,
however, there was no report about the function of pec-
tin synthesis and its role in fiber development. Analyses
of the GAUT gene family have shown that all members
share a conserved glycosyltransferase family 8 domain
(Godoy et al. 2013; Vasco et al. 2011). In addition,
GAUT proteins in the four species of cotton have a
PLN02769 domain. 14 GAUT genes are homologous to
GAUT7, two of which are present in G.raimondii, and 4
in other three species.

The possible role of the GAUT gene family in fiber
development

The formation of bast fiber is an important quality trait
in ramie. The development of ramie fiber affecting the

rate of hemp formation and ultimately the economic
value of ramie directly (Chen et al. 2014). Analysis of the
¢DNA sequence of ramie GalAT, a key pectin biosyn-
thetic homolog of GAUT4, has showed that most
GAUT4 transcript accumulates in roots, followed by
leaves, phloem, and xylem (Liu et al. 2009). Similar to
the situation in hemp, the development of cotton fiber
cells is the main factor affecting cotton fiber quality
(Haigler et al. 2012). GbGAUT]1, a high galacturonic acid
(HG) GAUT protein contains a conserved glycosyl
transferase family 8 domain, falls into group GAUT-A in
the phylogenetic tree and is preferentially expressed dur-
ing fiber secondary cell wall thickening, especially at 35
DPA. These results indicate that the GbGAUTI gene
may play an important role in fiber development (Chi
et al. 2009).

In our study, the peak expression of GhHGAUT genes
was concentrated before 15 DPA. In six high-strength-
fiber materials, the highest expression was from 10 to
15 DPA, when the periods of fiber secondary wall thick-
ening and fiber elongation overlap (Ji 2011). In the low-
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Gene model ID 0 DPA 3 DPA 6 DPA 10 DPA 15 DPA
Gorai.001G104800 GrGAUTOT1 13.13 0.94 11.94 0.00 0.00
Gorai.001G172800 GrGAUT02 295 041 731 6.03 536
Gorai.001G188500 GrGAUTO03 13.30 4.76 72.76 7032 87.30
Gorai.001G205700 GIrGAUT04 6.77 1.1 20.09 17.12 15.52
Gorai.001G243400 GrGAUTOS 235 0.60 599 727 8.03
Gorai.002G013600 GrGAUTO06 0.16 0.00 0.57 0.59 0.36
Gorai.002G082100 GrGAUTO07 0.00 0.00 0.19 0.00 0.53
Gorai.004G074600 GrGAUT08 0.13 0.00 0.09 0.04 0.20
Gorai.004G155600 GIrGAUT09 327 0.00 0.00 0.00 0.00
Gorai.004G219100 GrGAUT10 1.12 0.07 2.82 191 1.35
Gorai.005G129100 GrGAUTTT 301 0.81 4.85 2.88 534
Gorai.006G236100 GIrGAUT12 261 0.00 5.66 357 3.26
Gorai.007G040000 GrGAUT13 2.20 0.27 7.31 6.00 797
Gorai.007G081500 GrGAUT14 0.31 0.00 0.00 0.00 0.00
Gorai.007G093500 GrGAUT15 4.58 583 16.21 12.30 11.55
Gorai.007G142400 GrGAUT16 2.17 0.88 6.24 533 3.80
Gorai.008G059800 GIrGAUT17 2.08 091 8.11 5.76 5.78
Gorai.010G190800 GrGAUT18 14.82 3.20 4149 3746 40.83
Gorai.012G042500 GIrGAUT19 0.00 0.00 0.00 0.00 0.00
Gorai.012G049900 GrGAUT20 1.93 0.56 375 3.08 207
Gorai.012G131400 GIrGAUT21 12.74 4.86 18.23 16.99 13.68
Gorai.013G063700 GIrGAUT22 362 0.99 0.00 0.00 0.00
Gorai.013G164000 GrGAUT23 0.74 0.00 033 048 045

strength lines, the expression of GhGAUT genes was
concentrated between 5 to 10 DPA, which corresponds
to the fiber elongation period (Fan 2013).

Relationship between pectin substances and cotton fiber
quality

As is well known, cotton fiber cells develop from a single
cell, and their main components are cellulosic materials
and pectin substances (Wang 2012). Pectin synthesis
and decomposition affect cotton fiber strength (Fan
2013). Pectin methylesterase (PME), a common enzyme
in plants that is related to cell wall structure, participates
in pectin decomposition and catalyzes pectin deesterifi-
cation to produce pectate and methanol (Fan 2013; Li
et al. 2016). According to previous studies, PME levels
increased during fiber development, with the lowest en-
zyme activity found in high-strength-fiber cultivars (Fan
2013; Li 2016). By comparing multiple transcriptome
datasets, Guo et al. (2007) identified two genes related to
pectin esterase, which is involved in the hydrolysis of
pectin to gelatinic acid, and the expression of these
genes were sharply upregulated starting at 12 DPA. In
addition, two enzymes involved in pectin synthesis,

UDP-glucose 6-dehydrogenase and UDP-D-glucuronic
acid 4-epimerase, were down-regulated during secondary
wall synthesis. The anthors found that the amount of
pectin was decreased in cells at the late stage of cotton
fiber development (Gou et al. 2007). Research based on
immunohistochemistry has revealed that unesterified
homogalacturonan is sparse in epidermal cells, which do
not develop into fibers, whereas this compound is abun-
dant in elongated cotton fiber cells (Zhao et al. 2012).
The above-mentioned observations suggest that pectin
synthesis affects early fiber development, and the hy-
drolysis of pectin is related to the formation of fibers
during the later stage.

Conclusions

In this study, we characterized the GAUT gene family
associated with pectin synthesis by analyzing their phylo-
genetic relationships, conserved motifs, gene structures,
promoter sequences, and expression in cotton lines hav-
ing different fiber strengths. Comprehensive expression
and bioinformatics analysis indicated that the peak ex-
pression of GhGAUT genes was concentrated before
15 DPA. Gene expression in the six materials with
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Gene model ID 10 DPA 15 DPA 18 DPA 21 DPA 28 DPA
GOBAR_AA01456 GbGAUTOT 0.01 0.00 0.00 0.00 0.00
GOBAR_AA00301 GbGAUT02 0.04 0.01 0.50 0.04 0.28
GOBAR_AA01219 GbGAUTO3 1048 10.76 14.62 9.76 10.01
GOBAR_AA02321 GbGAUTO4 6.93 15.84 12.14 14.85 12.65
GOBAR_AA25346 GbGAUTO5 1.54 143 1.19 1.21 2.19
GOBAR_AA13922 GbGAUT06 559 5.50 4.78 491 1.95
GOBAR_AA10943 GbGAUTO7 4527 4140 22.30 3144 17.28
GOBAR_AA06647 GbGAUT08 444 3.20 4.10 3.13 4.90
GOBAR_AA01514 GbGAUT09 3041 28.78 2556 26.60 25.26
GOBAR_AA37671 GbGAUTI10 29.24 31.37 28.77 27.95 17.48
GOBAR_AA14268 GbGAUTT1 2094 18.81 15.18 17.15 11.50
GOBAR_AA04077 GbGAUTI12 0.02 0.01 0.02 0.01 0.00
GOBAR_AA34869 GbGAUT13 17.90 19.76 23.95 19.18 2265
GOBAR_AA07870 GbGAUT 14 1.31 0.85 046 0.67 0.18
GOBAR_AA36945 GbGAUT15 522 446 395 397 352
GOBAR_AA25184 GbGAUT16 21.04 26.67 29.70 2649 41.24
GOBAR_AA35174 GbGAUT17 0.62 0.64 0.70 0.54 0.81
GOBAR_AA22791 GbGAUT18 562 6.42 11.06 6.51 10.14
GOBAR_AA03897 GbGAUT19 7.78 6.91 5.00 6.68 260
GOBAR_AA05453 GbGAUT20 0.26 0.18 048 0.27 0.22
GOBAR_AA14759 GbGAUT21 1.23 1.04 033 0.90 0.01
GOBAR_DD05031 GbGAUT22 0.00 0.00 0.00 0.01 0.00
GOBAR_DD13138 GbGAUT23 0.07 0.04 0.26 0.06 0.17
GOBAR_DD33622 GbGAUT24 293 329 1.99 291 1.30
GOBAR_DD37379 GbGAUT25 3.39 3.86 3.01 367 1.15
GOBAR_DD20347 GbGAUT26 3.66 4.18 324 4.01 1.26
GOBAR_DD28302 GbGAUT27 1.32 1.17 1.54 1.16 585
GOBAR_DD32865 GbGAUT28 4292 37.70 23.37 29.94 18.16
GOBAR_DD34963 GbGAUT29 5.21 351 4.02 319 297
GOBAR_DD05509 GbGAUT30 6.76 791 7.69 743 744
GOBAR_DD33929 GbGAUT31 26.33 27.23 25.11 24.79 23.75
GOBAR_DD27569 GbGAUT32 25.99 22.78 16.21 18.16 1244
GOBAR_DD14647 GbGAUT33 37.89 41.23 39.75 36.68 45.19
GOBAR_DD04306 GbGAUT34 24.68 3242 28.71 26.97 35.18
GOBAR_DD07609 GbGAUT35 0.05 0.00 0.01 0.02 0.00
GOBAR_DD34943 GbGAUT36 1.69 1.75 1.29 146 0.29
GOBAR_DD05442 GbGAUT37 2.76 2.21 204 1.86 293
GOBAR_DD22761 GbGAUT38 472 5.52 4.74 3.81 4.89
GOBAR_DD24858 GbGAUT39 17.74 2375 2263 2355 15.60
GOBAR_DD38263 GbGAUT40 253 2.71 283 2.34 2.29
GOBAR_DD34814 GbGAUT41 3.99 513 8.02 542 595
GOBAR_DD11145 GbGAUT42 0.16 0.03 0.24 0.04 0.09
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Gene model ID root stem leaf 5 DPA fiber 10 DPA fiber 20 DPA fiber 25 DPA fiber
Gh_A01G0568 GhGAUTO1 269 1.36 18.75 0.07 0.02 1.06 2.84
Gh_A02G0896 GhGAUT02 4.50 4.39 751 501 1.96 4.07 6.83
Gh_A04G0911 GhGAUTO03 4.95 439 5.79 6.02 6.15 531 4.12
Gh_A05G3203 GhGAUT04 591 12.21 592 5.05 3.80 457 4.90
Gh_A05G3268 GhGAUTO5 13.72 394 1545 6.10 4.66 436 9.24
Gh_A05G1520 GhGAUT06 6.67 743 7.86 1436 1449 763 840
Gh_A06G1385 GhGAUT07 12.62 1045 1891 37.20 41.63 5.77 1038
Gh_A07G1907 GhGAUTO8 447 820 1.24 3.04 259 8.15 5.55
Gh_A07G1602 GhGAUT09 4.67 265 592 14.99 1792 729 858
Gh_A07G1480 GhGAUTI10 22.20 16.95 23.86 1797 15.28 1772 26.25
Gh_A07G0842 GhGAUTT1 20.23 14.72 2333 2401 2332 11.06 1340
Gh_A07G1344 GhGAUTI2 398 1.08 470 4.15 4.10 243 375
Gh_A08G1146 GhGAUT13 15.55 9.08 12.80 9.81 743 10.44 12.05
Gh_AT1G1169 GhGAUT 14 10.10 5.59 6.22 534 361 6.04 5.68
Gh_A11G0310 GhGAUT15 3.80 430 265 133 0.78 3.85 378
Gh_AT1G0648 GhGAUT16 0.84 0.79 1.68 1.59 1.71 1.21 1.61
Gh_A13G0573 GhGAUT17 2.71 542 4.07 5.08 6.14 343 511
Gh_A13G1199 GhGAUT18 0.55 0.06 1.83 032 024 0.17 1.15
Gh_DO01G0577 GhGAUT19 1.80 0.79 1313 0.04 0.02 0.96 2.56
Gh_D02G1116 GhGAUT20 4.95 3.94 6.05 8.15 538 373 7.89
Gh_D04G1424 GhGAUT21 5.00 529 520 4.14 246 238 3.89
Gh_D04G0402 GhGAUT22 531 9.34 477 4.25 4.04 431 452
Gh_D04G0340 GhGAUT23 15.34 2.59 14.94 5.79 6.26 344 7.55
Gh_D05G1691 GhGAUT24 5.12 332 747 4.25 283 11.93 8.28
Gh_D06G1729 GhGAUT25 14.69 10.26 1832 41.09 48.94 7.24 9.88
Gh_D07G2130 GhGAUT26 378 3.86 244 293 2.05 821 523
Gh_D07G1799 GhGAUT27 6.53 387 5.70 1320 16.98 738 829
Gh_D07G0913 GhGAUT28 19.85 1238 17.22 20.97 22.64 1323 14.94
Gh_D07G1583 GhGAUT29 24.72 16.46 31.64 2744 22.77 2091 24.89
Gh_D07G1453 GhGAUT30 322 0.79 3.07 375 327 225 3.05
Gh_D08G1429 GhGAUT31 8.65 542 831 6.68 6.18 461 579
Gh_D09G2061 GhGAUT32 2.59 2.34 355 7.04 511 461 7.16
Gh_D11G1324 GhGAUT33 825 6.34 6.75 342 260 5.80 532
Gh_D11G0365 GhGAUT34 449 5.13 3.89 2.06 1.26 3.99 513
Gh_D11G0880 GhGAUT35 4.60 263 5.80 797 12.90 7.35 9.40
Gh_D11G0760 GhGAUT36 1.77 0.85 2.79 2.11 145 .11 1.39
Gh_D12G0542 GhGAUT37 3.29 1.62 331 331 2.95 4.44 3.81
Gh_D13G0555 GhGAUT38 433 5.66 337 761 761 331 4.24
Gh_D13G1495 GhGAUT39 067 032 1.90 041 0.11 0.17 1.12
Gh_A09G2268 GhGAUT40 4.82 445 548 7.20 597 525 10.16
Gh_AT1G3052 GhGAUT41 537 3.17 6.77 9.65 15.14 13.75 14.55
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high-strength fiber were concentrated between 10 and
15 DPA, corresponding to the beginning of the fiber
secondary wall thickening period and part of the fiber
elongation and thickening phase. In contrast, GAUT
gene expression in six materials with low-strength
fiber was at the highest level from 5 to 10 DPA,
which was the fiber elongation period. The result lays
the foundation for future researches associated with
pectin synthesis during cotton fiber development.

Methods

Identification of cotton GAUT family members

To identify all homologous GAUT gene family in Arabi-
dopsis (Sterling et al. 2006), we used a Hidden Markov
Model integrated in HMMER 3.0 (Finn et al. 2011) to
search for the glycosyl transferase family 83 (PF01501)
in the following species: Carica papaya L. (Tang et al.
2008) (http://www.phytozome.net), Theobroma cacao
(Argout et al. 2011), G. raimondii (Wang et al. 2012)
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(http://www.phytozome.net), Oryza sativa (Du et al.
2017) (http://www.mbkbase.org/R498/), A. thaliana
(Cao et al. 2011;) (http://www.arabidopsis.org), G. barba-
dense (Liu et al. 2015) (http://database.chgc.sh.cn/

cotton/index.html), G. hirsutum (Li et al. 2015; Zhang
et al. 2015) (http://mascotton.njau.edu.cn), and G. arbor-
eum (Du et al. 2018) (ftp://bioinfo.ayit.edu.cn/
downloads/). The sequences were verified using BLASTp
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Gene model ID Forward primer Reverse primer

Gh_A07G1907 GhGAUTO08 CTGCGGTTCTATCTGCCAGACG TCTTTGCCAAAAACGGGTCCGA
Gh_A07G1480 GhGAUT10 CTTGCTGCATCCGTAGTGGTGA ACCTGCATTGCCCCAAGATTCA

Gh_A07G0842 GhGAUTT1 TGGTGCACTTCAACGGGAACAT TGCAGGCCTGTACAAACTCCAG
Gh_D06G1729 GhGAUT25 TAGGGTCGGCTCCTTCGTCAAT CAATGGGTTCTTTCAAGGCGGC

Gh_D07G1583 GhGAUT29 AAGGAGGTCCGTTTTGGCACTC CTTTCGAGCGTAGGAGGCGTAG

with AtGAUT sequences as the query sequences and an
e-value threshold of 1x107°. After multiple sequence
alignment in ClustalW program (Thompson et al. 2003),
incomplete sequences were manually deleted.

Phylogenetic tree construction, analysis of gene structure

and localization

A neighbor-joining phylogenetic tree was constructed from
the aligned sequences using MEGA v6.06 with 1 000 boot-
strap repeats. To confirm GAUT gene structure in Gossy-
pium species, information about the exons and introns of
GAUT genes was retrieved from the GFF3 file, and the
exon/intron structures were visualized using the Gene Struc-
ture Display Server 2.0 (Hu et al. 2015). Conserved domains
were predicted using a conserved domain database (http://
www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)  (Marchler
et al. 2010). Motifs were explored using the MEME program
(http://meme.nbcr.net/meme) (Bailey et al. 2006), with the
maximum number of motifs set to 20. Analysis and
visualization of the chromosomal distribution of the GAUT
genes were carried out using MapChart 2.2 (Voorrips 2002).

Promoter region and collinearity analysis of four cotton
species

The promoter region of 41 GhGAUT genes were analyzed.
Analysis of cis-acting elements was carried out using the
PlantCARE database (http://bioinformatics.psb.ugent.be/
webtools/plantcare/html) (Lescot et al. 2002), The 32 cis-
elements were detected in the promoter region of the 41
GAUT genes in upland cotton. The 32 cis-elements con-
tain motifs that have characteristic of regulatory sequences
in response to anaerobicity, abiotic stress and hormone
signaling. Repetitive elements in the GAUT gene family
were identified by collinear analysis using the entire
BLAST array (e-value=1x 10" ®) in the MCScan (Tang
et al. 2008).

Plant materials

Plants were grown using standard field management
practices in Anyang, China. One hundred and ninty-six
RIL populations were constructed with 0-153 and 9708
as parents, and 5 lines with high fiber strength and 5
lines with low fiber strength were screened. 0-153 were
a high-value parents in fiber characters and 9708 were
a low-value parents. Plant materials consisted six high-

fiber-strength lines and six low-fiber-strength lines from
a RILs populations (Sun et al. 2012). The date of flower-
ing was recorded as 0 days post-anthesis (0 DPA). Cot-
ton bolls were sampled every 5 days from 0 to 30 DPA.
After collection, fibers were separated from the cotton
bolls with a sterile knife, immediately froze in liquid ni-
trogen, and stored at 80 °C, another part of fiber samples
were dried at 45 °C for determination of pectin content.
RNA was extracted from cotton fiber tissues, reverse-
transcribed into cDNA. The cDNA was stored at —20 °C
for subsequent qRT-PCR experiments with three bio-
logical replicates (Tuttle et al. 2015).

Transcriptome analyses and qRT-PCR

The transcriptome data were downloaded from the Se-
quence Read Archive (SRA) of the NCBI database
(https://www.ncbinlm.nih.gov/) (Paterson et al. 2012).
The SRA data for G. raimondii (PRJNA79005; Wang
et al. 2012), G. barbadense (PRJNA251673; Liu et al.
2015), G. hirsutum (PRJNA248163; Zhang et al. 2015),
and G. arboreum (PRINA179447; Du et al. 2018) were
converted to FASTQ format data with the SRA Toolkit,
and then analyzed and filtered with the FASTX-Toolkit
(http://hannonlab.cshl.edu/fastx_toolkit/index.html).
TopHat2 (Kim et al. 2013) was used to map the clean
data to the index genomes constructed by Bowtie2
(Langmead and Salzberg 2012) with the library-type and
fr-unstranded parameters. The Cufflinks program was
used to calculate the transcript levels of the genes in the
reference genome (Trapnell et al. 2010). Gene transcript
levels (Tables 2,34, and 5) were visualized using a
normalization method based on log, (FPKM +1) in the
pheatmap (https://CRAN.R-project.org/package=pheatmap).
qRT-PCR assays of selected genes were performed using spe-
cific designed primers (Table 6) on a Roche 480 II PCR sys-
tem. Gene transcript levels were calculated using the 2724,
method, and the experimental design included three bio-
logical replicates and three technical replicates (Livak and
Schmittgen 2001; Pfaffl 2001).
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