RESEARCH

Journal of Cotton Research

Open Access

Evolution of pectin synthesis relevant galacturonosyltransferase gene family and its expression during cotton fiber development

FAN Senmiao¹, LIU Aiying¹, ZOU Xianyan¹, ZHANG Zhen¹, GE Qun¹, GONG Wankui¹, LI Junwen¹, GONG Juwu¹, SHI Yuzhen¹, DENG Xiaoying¹, JIA Tingting¹, YUAN Youlu^{1,2*+} and SHANG Haihong^{1,2*+}

Abstract

Background: Pectin is a key substance involved in cell wall development, and the galacturonosyltransferases (GAUTs) gene family is a critical participant in the pectin synthesis pathway. Systematic and comprehensive research on *GAUTs* has not been performed in cotton. Analysis of the evolution and expression patterns of the GAUT gene family in different cotton species is needed to increase knowledge of the function of pectin in cotton fiber development.

Results: In this study, we have identified 131 GAUT genes in the genomes of four *Gossypium* species (*G. raimondii*, *G. barbadense*, *G. hirsutum*, and *G. arboreum*), and classified them as *GAUT-A*, *GAUT-B* and *GAUT-C*, which coding probable galacturonosyltransferases. Among them, the GAUT genes encode proteins GAUT1 to GAUT15. All GAUT proteins except for GAUT7 contain a conserved glycosyl transferase family 8 domain (H-DN-A-SVV-S-V-H-T-F). The conserved sequence of GAUT7 is PLN (phospholamban) 02769 domain. According to *cis*-elemet analysis, GAUT genes transcript levels may be regulated by hormones such as JA, GA, SA, ABA, Me-JA, and IAA. The evolution and transcription patterns of the *GAUT* gene family in different cotton species and the transcript levels in upland cotton lines with different fiber strength were analyzed. Peak transcript level of *GhGAUT* genes were concentrated from 10 to 15 DPA. In the six materials with high fiber strength, the transcription during cotton fiber development.

Conclusions: The *GAUT* gene family may affect cotton fiber development, including fiber elongation and fiber thickening. In the low strength fiber lines, *GAUTs* mainly participate in fiber elongation, whereas their major effect on cotton with high strength fiber is related to both elongation and thickening.

Keywords: Cotton fiber development, Pectin, Galacturonosyltransferases, Evolution, Transcription patterns

[†]Yuan YL and Shang HH contributed equally to this work.

¹State Key Laboratory of Cotton Biology; Key Laboratory of Biological and Genetic Breeding of Cotton, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang

455000, China Full list of author information is available at the end of the article

© The Author(s). 2021 **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

^{*} Correspondence: yuanyoulu@caas.cn; shanghaihong@caas.cn

Background

Cotton, the world's most important economic fiber crop, is tightly connected to the ecomonic development and human livelihoods. Cotton fiber formation and development is an important factor in cotton breeding (Fan 2013). The cell wall structure of cotton fiber is composed of pectin and cellulose. The synthesis and decomposition of pectin are therefore important factors affecting cotton fiber formation (Basra et al. 1984).

Pectin, which plays a critical role in plant growth and development, is mainly found in the primary and middle layers of plant cell walls, and participates in the formation of plant tissue structure, biotic and abiotic stress processes. Pectin biosynthesis is estimated to require at least 67 transferases including glycosyl-, methyl-, and acetyltransferases (Mohnen et al. 2008). Pectin is also the most complex cell wall polysaccharide (Scheller et al. 2007). The sugar nucleotide reverse transporter transports the sugar nucleotide to the Golgi apparatus under the action of a specific glycosyltransferase. The glycosyl group is then cleaved and attached to the elongating polysaccharide chain to form pectin. The synthesis of pectin involves at least 53 different glycosyltransferases localized on the Golgi apparatus (Ridley et al. 2001).

Only two glycosyltransferase-coding genes are recognized on the basis of previous research in *Arabidopsis*: homogalacturonan (HG) synthase and glucuronyltransferase involved in rhamnogalacturonanII (RG II) synthesis (Willats et al. 2006). Compared with currently cataloged HG pectin multimerism in plants, much researches have been performed on galacturonyltransferase (HG: α -1,4-D-galacturonosyltransferase, HG:GalAT). The gene encoding HG: GalAT (EC 2.4.1.43) is named galacturonosyltransferase (GAUT) (Mohnen et al. 2008;Willats et al. 2006).

Galacturonosyltransferases (GAUTs), which are partly responsible for pectin biosynthesis, are glycosyltransferase (Harholt et al. 2010). According to evolutionary analysis, they constitute glycosyltransferase family 8 (GT8s). GT8 consists of three separate protein classes, classes I and II contain mostly eukaryotic proteins, while almost the entire class III consists of bacterial proteins (Yin et al. 2010a, b). Plant cell-wall-related proteins, including GAUT and GAUT-like (GATL) proteins, are all located in class I (Sterling et al. 2006). The GAUT gene family was first identified by Blast analysis of the Arabidopsis genome, on the basis of structural similarity, 15 GAUT and GATL family members have been classified as follows, GAUT1-GAUT7 in GAUT-A; GAUT8-GAUT11 in GAUT-B; and GAUT12-GAUT15 in GAUT-C. All GATL family members are clustered together and constitute a clade closely related to GAUT15. Experiments have shown that GAUT1 is equivalent to HG:GalAT, GalAT and the GAUT1-related gene family provides the genetic and biochemical tools required to study the function of these genes in pectin synthesis (Sterling et al. 2006). GAUT1 also belongs to GT8, and the GAUT1related superfamily also contains 10 GAUT-like genes (Cantarel et al. 2008). The gaut1 mutation can cause plant dwarfing, reduce cell adhesion and a 25% reduction in GalA content of leaves (Orfila et al. 2005). The GAUT1-GAUT7 core complex is held together by one or more covalent disulfide bonds and other noncovalent interaction. GAUT1 is dependent on GAUT7 and remains in the Golgi apparatus, where it is considered to be a component of the HG:GalAT complex that participates in pectin synthesis (Atmodjo et al. 2011). The gaut8 mutation can reduce the adhesion of epidermal cells of the young leaves and the marginal cells of the roots, thereby leading to plant dwarfing (Durand et al. 2009). The gaut11 mutation can reduce the thickness of the seed mucus (Caffall et al. 2009). In the gaut13gaut14 double mutant, the distribution of pectin in the pollen tube wall is altered, which results in serious defects in pollen tube shape and growth (Wang et al. 2013).

The GAUT family is large, and more than 67 members have been found in tomato (Solanum lycopersicum). The GAUT family member with the highest expressed level in tomato is gaut4 (Godoy et al. 2013). In the gaut4 mutant, pectin structure is changed significantly, and other fruit traits, such as starch content, fruit yield, and single fruit quality, are also altered, consistent with an observed increase in firmness. In addition, harvest index is significantly decreased because of a reduction in fruit weight and number (Godoy et al. 2013). Hyodo et al. (2013) demonstrated that the gaut1 gene had higher transcription level during fruit development, especially in the fruit epidermis, while gaut1 showed higher expression level in the mesocarp, endocarp, septum, locular tissue, and nucleus after the fruit enters maturity.

To improve the quality of high fiber strength cotton materials, we have focused on cotton fiber development. Zhang et al. (2017) used recombinant inbred lines (RILs) to identify 16 stable quantitative trait loci (QTLs) related to fiber strength. In addition, Zou et al. (2019) identified 3 364 candidate genes related to cotton fiber strength, and analyzed the differences in fiber development (5 to 30 DPA) using two extremely different materials in a RIL population. A total of 363 differentially expressed genes (DEGs) comprising 4, 75, 39, 62, and 183 genes at 10, 15, 20, 25, and 30 DPA, respectively, were detected. Among them, 228 (62.6%) genes were upregulated in high-strength materials, while $Gh_A07G1907$ (homologous to GAUT6) was downregulated at 15 DPA but upregulated at 25 DPA.

As discussed aboved, the GAUT gene family has been studied in plants such as *Arabidopsis* and tomato etc., but no systematic investigation has been carried out in cotton. In the current study, we systematically and comprehensively analyzed the chromosomal location, structures, and phylogenetic relationships of the GAUT gene family in different *Gossypium* species. We also focused on the transcription of these genes during the fiber development.

Results

Identification of cotton GAUT genes

Detailed phylogenetic analyses have divided GT8 proteins into two distantly related clades: 1) the GAUT1related family, including the GAUT and GATL proteins, known as galacturonosyltransferase proteins, and 2) a group including plant glycogen protein-like starch starters (PGSIPs) and galactitol synthases (GolSs) (Yin et al. 2010a, b). According to the Pfam database and a bioinformatics analysis, all inferred proteins have a Glyco_transf_8-like domain (PF01501), which indicates that the corresponding genes belong to the GAUT gene family (Kikuchi et al. 2003). To identify the GAUT gene in Gossypium species, we identified 187 GAUT genes from eight species (Fig. S1), including 131 genes from the following species: G. hirsutum (41 genes), G. barbadense (42 genes), G. arboreum (25 genes) and G. raimondii (23 genes). The length of coding regions in the GAUT gene family ranged from 1 098 to 4 899 bp, and the encoded proteins comprised of 365 to 1 632 amino acids residues. The length of 32 GAUT genes was less than 3 000 bp; 88 genes had lengths of 3 000 to 7 000 bp, while the remaining 11 were longer than 7 000 bp (Table 1).

Phylogenetic analysis and classification of the GAUT gene family in cotton

Using published genome sequence data from eight species, we determined the phylogenetic relationships of GAUT gene family members among multiple species. In a previous study (Sterling et al. 2006), three types of protein sequences, GAUT-A, GAUT-B, and GAUT-C, were found by multiple sequence alignment of the 187 GAUT proteins of these eight species to *Arabidopsis* homologs (Fig. 1a). In the present study, we analyzed the GAUT genes of four cotton species, thereby classifying 62 proteins into GAUT-A, 38 into GAUT-B, and 31 into GAUT-C (Fig. 1b). In addition, GhA07G1907 was a differentially expressed gene in the QTL which was related to fiber strength. It was a homologous gene to AtGAUT6. And genes homologous to AtGAUT6 had the most number in Gossypium species (Zou et al. 2019). We found 16 AtGAUT13 homologs, 14 genes were homologous to each of AtGAUT7, AtGAUT9, and AtGAUT11, and 11 genes were homologous to each of AtGAUT2 and AtGAUT12. The remaining genes had fewer than 10 homologs. No gene homologous to AtGAUT14 were detected in any of the four cotton species, and no AtGAUT5 homolog was identified in *G. hirsutum*. Only one homolog of each of AtGAUT5 and AtGAUT10 were detected, namely, GrGAUT18 and GhGAUT03, respectively. Four homologs each of AtGAUT2, 4, 6, 7, 9, 12, and 13, three homologs each of AtGAUT8 and AtGAUT11, and two homologous genes to each of AtGAUT1, and AtGAUT3 were discovered in *G. hirsutum*.

Analysis of conserved motif and GAUT protein structures

The following motif is conserved in 15 Arabidopsis GAUT protein and their orthologues in cotton: H-DN-A-SVV-S-V-H-T-F (H-x (2)-[ILV]-x-[ST]-D-N-[IV]-[IL]-A-[ASTV]-S-V-V-[AIV]-x-S-x-[AIV]-x (2)-[AS]-x (2)-[PS]-x (3)-V-[FL]-H-[ILV]-[ILV]-T-[DN]-x (2)-[NST]-x (2)-[AGP]-[IM]-x (3)-F) (Sterling et al., 2006). The GAUT gene family encode proteins with a molecular mass between 61 and 78 kDa (Sterling et al. 2006; Godoy et al. 2013). Consistent with topological predictions, most GAUT proteins can encode a type II membrane protein containing a putative transmemberance domain in its hypervariable N-terminal region. Among the GAUT proteins analyzed in our study, three GAUT proteins (GAUT 3, 4, and 5) which belongeding to GAUT-A contained an N-terminal signal peptide rather than a transmemberance domain. The only GAUT gene family members predicted to have no N-terminal transmemberance domain or signal peptide in cotton were GAUT2 proteins (Fig. 2b). We also found some GAUT1, GAUT3 and GAUT11 proteins with the above-mentioned characteristics. Among 14 GAUT7 proteins belonging to GAUT-A group in four Gossypium species (Table 1), the proteins encoded by 10 genes homologous to GAUT7 contained the conserved PLN02769 domain (Fig. 2b), which was assigned to the category of "Probable Galacturonosyltransferase" (https://www.ncbi.nlm.nih.gov/ proteinclusters/?term=PLN02769). The remaining GAUT family members contained a conserved glycosyl transferase family 8 domain. The predicted motifs of each member are shown in Fig. 2C, and the specific structural information is given in Fig. S2.

Analysis of collinearity and repeating elements in the GAUT gene

According to the results of MCScan analysis, there was no tandem repeat element present in the GAUT gene family in *Gossypium*. In *G. hirsutum*, *GhGAUT01* and *GhGAUT19*, *GhGAUT15* and *GhGAUT34*, *GhGAUT16* and *GhGAUT36*, *GhGAUT17* and *GhGAUT38*, and *GhGAUT18* and *GhGAUT39* were homologous to the

_
5
Ę
Ħ
Ŭ
~
.⊨
S
\subseteq
ē.
H
2
Q
d)
S
ē
U,
S
\subseteq
g
Ŧ
>
ö
ĕ
õ
Ĕ
1
U
<u>_</u>
g
σ
\overline{O}
Ũ
Ō
0
2
5
~
é
÷
4
0
\subset
Ŧ
ည
5
$\underline{-}$
$\overline{\mathbf{O}}$
Ē
σ
\cap
\equiv
S
3
X
$\underline{\sim}$
<u>_</u>
č
5
S
Ő
2
5
Ĕ
$\frac{1}{2}$
\cup
-
đ
ž
0

cotton	Gene .		Chromosomes	Start	End	CDS length /	Protein length /	Arabidopsis	Arabidopsis protein	classification
species	model					bp	аа	ortholog	description	
G. arboreum	GaGAUT01	Ga01G0140	Chr01	912 602	919 551	1 974	657	AT2G46480.1	GAUT2	GAUT-A
	GaGAUT02	Ga01G0796	Chr01	11 759 252	11 761 952	1 605	534	AT3G01040.1	GAUT13	GAUT-C
	GaGAUT03	Ga03G0997	Chr03	28 017 614	28 023 124	1 827	608	AT2G38650.1	GAUT7	GAUT-A
	GaGAUT04	Ga04G0446	Chr04	6 075 632	6 079 138	1 602	533	AT1G18580.1	GAUT11	GAUT-B
	GaGAUT05	Ga04G1634	Chr04	90 270 116	90 274 871	1 602	533	AT3G01040.1	GAUT13	GAUT-C
	GaGAUT06	Ga04G1718	Chr04	92 087 105	92 095 131	1 719	572	AT3G58790.1	GAUT15	GAUT-C
	GaGAUT07	Ga05G1886	Chr05	17 017 554	17 030 587	2 328	775	AT2G38650.1	GAUT7	GAUT-A
	GaGAUT08	Ga06G1924	Chr06	120 827 230	120 831 246	1 863	620	AT2G38650.1	GAUT7	GAUT-A
	GaGAUT09	Ga07G2432	Chr07	93 674 605	93 678 413	1 800	599	AT1G06780.1	GAUT6	GAUT-A
	GaGAUT10	Ga07G1617	Chr07	33 502 551	33 506 162	2 046	681	AT1G18580.1	GAUT11	GAUT-B
	GaGAUT11	Ga07G2025	Chr07	79 624 753	79 627 031	1 674	557	AT3G02350.1	GAUT9	GAUT-B
	GaGAUT12	Ga07G1793	Chr07	47 136 518	47 138 700	1 695	564	AT3G02350.1	GAUT9	GAUT-B
	GaGAUT13	Ga07G1005	Chr07	13 869 804	13 874 208	1 695	564	AT3G02350.1	GAUT9	GAUT-B
	GaGAUT14	Ga08G2216	Chr08	120 833 143	120 836 579	1 758	585	AT1G06780.1	GAUT6	GAUT-A
	GaGAUT15	Ga08G0724	Chr08	11 007 501	11 030 719	1 803	600	AT1G06780.1	GAUT6	GAUT-A
	GaGAUT16	Ga08G1537	Chr08	103 324 886	103 331 544	2 376	791	AT2G46480.1	GAUT2	GAUT-A
	GaGAUT17	Ga09G2452	Chr09	81 931 389	81 936 357	1 830	609	AT2G38650.1	GAUT7	GAUT-A
	GaGAUT18	Ga09G0159	Chr09	3 533 841	3 539 737	1 476	491	AT3G01040.1	GAUT13	GAUT-C
	GaGAUT19	Ga11G2709	Chr11	109 497 004	109 501 318	1 797	598	AT1G06780.1	GAUT6	GAUT-A
	GaGAUT20	Ga11G3730	Chr11	121 180 096	121 183 320	1 602	533	AT1G18580.1	GAUT11	GAUT-B
	GaGAUT21	Ga11G3192	Chr11	116 488 843	116 492 318	2 031	676	AT1G18580.1	GAUT11	GAUT-B
	GaGAUT22	Ga11G3319	Chr11	117 670 007	117 673 612	1 602	533	AT3G01040.1	GAUT13	GAUT-C
	GaGAUT23	Ga12G2518	Chr12	93 835 048	93 837 447	1 683	560	AT3G02350.1	GAUT9	GAUT-B
	GaGAUT24	Ga13G0584	Chr13	8 732 738	8 736 526	2 046	681	AT3G61130.1	GAUT1	GAUT-A
	GaGAUT25	Ga13G1828	Chr13	108 148 486	108 151 333	1 623	540	AT5G54690.1	GAUT12	GAUT-C
G. barbadense	GbGAUT01	GOBAR_AA01456	At_S0001	1 016 334	1 024 307	1 989	662	AT4G38270.1	GAUT3	GAUT-A
	GbGAUT02	GOBAR_AA00301	At_S0001	9 613 451	9 616 141	1 605	534	AT5G54690.1	GAUT12	GAUT-C
	GbGAUT03	GOBAR_AA01219	At_S0002	23 157 092	23 162 812	1 812	603	AT2G38650.1	GAUT7	GAUT-A
	GbGAUT04	GOBAR_AA02321	At_S0004	74 825 334	74 826 761	1 428	475	AT1G18580.1	GAUT11	GAUT-B
	GbGAUT05	GOBAR_AA25346	At_S0005	14 497 863	14 501 682	1 887	628	AT2G38650.1	GAUT7	GAUT-A
	GbGAUT06	GOBAR_AA13922	At_S0005	93 596 407	93 601 574	1 752	583	AT3G01040.1	GAUT13	GAUT-C
	GbGAUT07	GOBAR_AA10943	At_50006	107 027 362	107 031 375	1 731	576	AT2G38650.1	GAUT7	GAUT-A

(pən	1 / 1	•
ontin	engtŀ	
on (Ca	tein l	
cotto	Pro	aa
ns in	gth /	
protei	S lenç	
ase p	Ö	dq
ansfer		
syltra	End	
uronc		
alacti	art	
ded g	s Sti	
encoc	ome	
the e	somo.	
th of	Ŀ	
lengt		
and		
us ID	₫	
al loc		
Dsom	aue	odel
romo	ĕ	ŭ
1 Ch		s
able	otton	pecie
	Ŭ	S

Gene model	Ð	Chromosomes	Start	End	CDS length / hn	Protein length /	Arabidopsis	Arabidopsis protein	classification
GhGALITOR	GORAR AA06647	At SOON7	89.670.406	89.674.210	1 800	599	AT1G06780 1	GAUT6	GALIT-A
GbGAUT09	GOBAR AA01514	At_S0007	75 555 669	75 557 947	1 674	557	AT3G02350.1	GAUT9	GAUT-B
GbGAUT10	 GOBAR_AA37671		15 099 056	15 101 716	1 710	569	AT3G25140.1	GAUT8	GAUT-B
GbGAUT11	GOBAR_AA14268	At_50007	46 927 015	46 929 189	1 590	529	AT3G25140.1	GAUT8	GAUT-B
GbGAUT12	GOBAR_AA04077	At_50008	11 065 254	11 067 714	1 134	377	AT1G06780.1	GAUT6	GAUT-A
GbGAUT13	GOBAR_AA34869	At_50009	73 319 234	73 324 201	1 830	609	AT2G38650.1	GAUTZ	GAUT-A
GbGAUT14	GOBAR_AA07870	At_50009	2 874 750	2 880 650	1 539	512	AT3G01040.1	GAUT13	GAUT-C
GbGAUT15	GOBAR_AA36945	At_S0011	13 994 303	13 999 030	1 656	551	AT1G06780.1	GAUT6	GAUT-A
GbGAUT16	GOBAR_A25184	At_50011	7 886 584	7 890 058	1 950	649	AT2G46480.1	GAUT2	GAUT-A
GbGAUT17	GOBAR_AA35174	At_50011	6 702 894	6 713 442	4 899	1 632	AT3G01040.1	GAUT13	GAUT-C
GbGAUT18	GOBAR_A422791	At_50012	13 348 599	13 350 991	1 683	560	AT3G02350.1	GAUT9	GAUT-B
GbGAUT19	GOBAR_AA03897	At_50013	14 455 836	14 460 722	2 064	687	AT4G38270.1	GAUT3	GAUT-A
GbGAUT20	GOBAR_AA05453	At_50013	77 398 681	77 401 498	1 539	512	AT5G54690.1	GAUT12	GAUT-C
GbGAUT21	GOBAR_AA14759	At_50386	114 937	118 369	1 497	498	AT1G06780.1	GAUT6	GAUT-A
GbGAUT22	GOBAR_DD05031	Dt_50001	933 831	940 348	2 067	688	AT4G38270.1	GAUT3	GAUT-A
GbGAUT23	GOBAR_DD13138	Dt_50001	9 304 556	9 307 362	1 347	448	AT5G54690.1	GAUT12	GAUT-C
GbGAUT24	GOBAR_DD33622	Dt_S0004	44 183 238	44 186 775	1 602	533	AT1G18580.1	GAUT11	GAUT-B
GbGAUT25	GOBAR_DD37379	Dt_S0004	6 278 421	6 283 494	1 851	616	AT3G01040.1	GAUT13	GAUT-C
GbGAUT26	GOBAR_DD20347	Dt_S0004	6 480 662	6 485 936	1 758	585	AT3G01040.1	GAUT13	GAUT-C
GbGAUT27	GOBAR_DD28302	Dt_S0005	16 373 039	16 381 357	2 811	936	AT5G47780.1	GAUT4	GAUT-A
GbGAUT28	GOBAR_DD32865	Dt_S0006	52 531 030	52 535 058	1 608	535	AT5G47780.1	GAUT4	GAUT-A
GbGAUT29	GOBAR_DD34963	Dt_S0007	51 871 252	51 875 198	1 800	599	AT1G06780.1	GAUT6	GAUT-A
GbGAUT30	GOBAR_DD05509	Dt_S0007	26 427 319	26 430 903	2 088	695	AT1G18580.1	GAUT11	GAUT-B
GbGAUT31	GOBAR_DD33929	Dt_S0007	43 934 795	43 936 661	1 476	491	AT3G02350.1	GAUT9	GAUT-B
GbGAUT32	GOBAR_DD27569	Dt_S0007	31 847 170	31 849 350	1 695	564	AT3G25140.1	GAUT8	GAUT-B
GbGAUT33	GOBAR_DD14647	Dt_S0007	13 131 930	13 134 606	1 710	569	AT3G25140.1	GAUT8	GAUT-B
GbGAUT34	GOBAR_DD04306	Dt_S0008	44 255 956	44 259 633	2 019	672	AT2G46480.1	GAUT2	GAUT-A
GbGAUT35	GOBAR_DD07609	Dt_S0008	8 776 221	8 778 456	1 134	377	AT1G06780.1	GAUT6	GAUT-A
GbGAUT36	GOBAR_DD34943	Dt_S0008	56 586 461	56 590 364	1 743	580	AT1G06780.1	GAUT6	GAUT-A
GbGAUT37	GOBAR_DD05442	Dt_S0011	11 746 553	11 750 934	1 761	586	AT1G06780.1	GAUT6	GAUT-A
GbGAUT38	GOBAR_DD22761	Dt_S0011	2 807 344	2 808 777	1 434	477	AT1G18580.1	GAUT11	GAUT-B
GbGAUT39	GOBAR_DD24858	Dt_S0011	7 360 685	7 363 733	1 485	494	AT2G46480.1	GAUT2	GAUT-A

R
ЪЧ,
Ŀ.
ni
ÿ
c
5
g
Ē
.⊟
ote
đ
e B
ğ
Sfe
aD
Ę
SS
ŭ
Ĕ
Ŧ
õ
e
8
g
Ð
Ę.
f
č
g
Б
σ
an
\Box
IS
З
na
õ
õ
ЪС
hr
\cup
5
٩ ا
<u>a</u>
_

cotton	Gene	D	Chromosomes	Start	End	CDS length /	Protein length /	Arabidopsis	Arabidopsis protein	classification
shecies						da	dd	ormorog		(
	GbGAUT40	GOBAR_DD38263	Dt_S0011	6 083 354	6 086 957	1 536	511	AT3G01040.1	GAUT13	GAUT-C
	GbGAUT41	GOBAR_DD34814	Dt_S0012	8 771 758	8 774 141	1 683	560	AT3G02350.1	GAUT9	GAUT-B
	GbGAUT42	GOBAR_DD11145	Dt_50013	46 541 744	46 544 946	1 272	423	AT5G54690.1	GAUT12	GAUT-C
G. hirsutum	GhGAUT01	Gh_A01G0568	A01	9 996 974	9 999 674	1 605	534	AT5G54690.1	GAUT12	GAUT-C
	GhGAUT02	Gh_A02G0896	A02	32 207 939	32 213 457	1 824	607	AT2G38650.1	GAUT7	GAUT-A
	GhGAUT03	Gh_A04G0911	A04	57 533 849	57 537 350	1 602	533	AT2G20810.1	GAUT10	GAUT-B
	GhGAUT04	Gh_A05G3203	A05	83 801 743	83 806 499	1 602	533	AT3G01040.1	GAUT13	GAUT-C
	GhGAUT05	Gh_A05G3268	A05	85 630 826	85 638 852	1 719	572	AT3G58790.1	GAUT15	GAUT-C
	GhGAUT06	Gh_A05G1520	A05	15 501 936	15 516 418	2 805	934	AT5G47780.1	GAUT4	GAUT-A
	GhGAUT07	Gh_A06G1385	A06	95 717 993	95 722 006	1 863	620	AT5G47780.1	GAUT4	GAUT-A
	GhGAUT08	Gh_A07G1907	A07	74 675 761	74 679 567	1 800	599	AT1G06780.1	GAUT6	GAUT-A
	GhGAUT09	Gh_A07G1602	A07	62 859 121	62 861 400	1 674	557	AT3G02350.1	GAUT9	GAUT-B
	GhGAUT10	Gh_A07G1480	A07	44 247 043	44 249 325	1 776	591	AT3G25140.1	GAUT8	GAUT-B
	GhGAUT11	Gh_A07G0842	A07	14 511 134	14 513 794	1 710	569	AT3G25140.1	GAUT8	GAUT-B
	GhGAUT12	Gh_A07G1344	A07	33 278 890	33 282 504	2 046	681	AT3G61130.1	GAUT1	GAUT-A
	GhGAUT13	Gh_A08G1146	A08	80 396 030	80 399 699	2 019	672	AT2G46480.1	GAUT2	GAUT-A
	GhGAUT14	Gh_A11G1169	A11	14 257 384	14 261 704	1 797	598	AT1G06780.1	GAUT6	GAUT-A
	GhGAUT15	Gh_A11G0310	A11	2 866 274	2 869 499	1 602	533	AT1G18580.1	GAUT11	GAUT-B
	GhGAUT16	Gh_A11G0648	A11	6 318 816	6 322 420	1 602	533	AT3G01040.1	GAUT13	GAUT-C
	GhGAUT17	Gh_A13G0573	A13	13 490 010	13 493 804	2 046	681	AT4G38270.1	GAUT3	GAUT-A
	GhGAUT18	Gh_A13G1199	A13	65 040 755	65 043 553	1 605	534	AT5G54690.1	GAUT12	GAUT-C
	GhGAUT19	Gh_D01G0577	D01	7 904 964	7 913 279	1 605	534	AT5G54690.1	GAUT12	GAUT-C
	GhGAUT20	Gh_D02G1116	D02	31 936 862	31 942 590	1 827	608	AT2G38650.1	GAUT7	GAUT-A
	GhGAUT21	Gh_D04G1424	D04	45 645 539	45 649 073	1 602	533	AT1G18580.1	GAUT11	GAUT-B
	GhGAUT22	Gh_D04G0402	D04	6 351 785	6 357 064	1 674	557	AT3G01040.1	GAUT13	GAUT-C
	GhGAUT23	Gh_D04G0340	D04	5 179 695	5 186 785	1 389	462	AT3G58790.1	GAUT15	GAUT-C
	GhGAUT24	Gh_D05G1691	D05	15 200 861	15 204 140	1 842	613	AT5G47780.1	GAUT4	GAUT-A
	GhGAUT25	Gh_D06G1729	D06	56 469 689	56 473 720	1 863	620	AT5G47780.1	GAUT4	GAUT-A
	GhGAUT26	Gh_D07G2130	D07	51 568 886	51 572 831	1 800	599	AT1G06780.1	GAUT6	GAUT-A
	GhGAUT27	Gh_D07G1799	D07	42 869 876	42 872 172	1 674	557	AT3G02350.1	GAUT9	GAUT-B
	GhGAUT28	Gh_D07G0913	D07	11 891 038	11 893 713	1 710	569	AT3G02350.1	GAUT9	GAUT-B
	GhGAUT29	Gh_D07G1583	D07	30 120 469	30 122 649	1 695	564	AT3G25140.1	GAUT8	GAUT-B

	D,
	Ð
	2
1	1
	2
,	Õ
	\mathcal{L}
	5
	Ч
	¥
	Ы
	2
	⊆
	S
	Ē
•	Ð
	Ŕ
	2
	Ω
	a١
	Š
	ത
	ē
0	t
	ć
	ŋ
2	₽
	>
	x
	z
	5
	≚
	2
	Ω
-	σ
	ത
	σ
-	σ
	Ð
	Ō
	Q
	2
	5
	~ ~
	Ψ
	\sim
-	금
	글
ļ	ot t
ļ	n of th
	ath of th
	ngth of th
	ength of th
	length of th
	d length of th
	ind length of th
	and length of th
	U and length of th
	IU and length of th
	is IU and length of th
	cus IU and length of th
	ocus IU and length of th
	locus IU and length of th
	al locus IU and length of th
	mai locus ID and length of th
	imal locus ID and length of th
	somal locus IU and length of th
	osomal locus IU and length of th
	mosomal locus IU and length of th
	omosomal locus IU and length of th
	iromosomal locus IU and length of th
	. Incomosomal locus IU and length of th
	Chromosomal locus IU and length of th
	1 Chromosomal locus IU and length of th
	2 T Chromosomal locus IU and length of th
	Ie 1 Chromosomal locus IU and length of th

Table 1 Chr	omosomal lc	ocus ID and lengt	h of the encode	ed galacturor	iosylicaristere	ase proteins in	Cotton (continued	()		
cotton species	Gene model	Q	Chromosomes	Start	End	CDS length / bp	Protein length / aa	Arabidopsis ortholog	Arabidopsis protein description	classification
	GhGAUT30	Gh_D07G1453	D07	24 699 109	24 702 694	2 031	676	AT3G61130.1	GAUT1	GAUT-A
	GhGAUT31	Gh_D08G1429	D08	46 983 870	46 990 546	2 235	744	AT2G46480.1	GAUT2	GAUT-A
	GhGAUT32	Gh_D09G2061	D09	47 942 831	47 947 845	1 818	605	AT2G38650.1	GAUT7	GAUT-A
	GhGAUT33	Gh_D11G1324	D11	12 768 969	12 772 925	1 794	597	AT1G06780.1	GAUT6	GAUT-A
	GhGAUT34	Gh_D11G0365	D11	3 115 363	3 118 680	1 602	533	AT1G18580.1	GAUT11	GAUT-B
	GhGAUT35	Gh_D11G0880	D11	7 605 876	7 610 151	2 031	676	AT2G46480.1	GAUT2	GAUT-A
	GhGAUT36	Gh_D11G0760	D11	6 527 861	6 531 464	1 602	533	AT3G01040.1	GAUT13	GAUT-C
	GhGAUT37	Gh_D12G0542	D12	9 891 906	9 894 305	1 614	537	AT3G02350.1	GAUT9	GAUT-B
	GhGAUT38	Gh_D13G0555	D13	7 521 289	7 525 063	2 046	681	AT4G38270.1	GAUT3	GAUT-A
	GhGAUT39	Gh_D13G1495	D13	46 583 202	46 585 967	1 599	532	AT5G54690.1	GAUT12	GAUT-C
	GhGAUT40	Gh_A09G2268	scaffold2280_ A09	33 334	38 396	1 821	606	AT2G38650.1	GAUT7	GAUT-A
	GhGAUT41	Gh_A11G3052	scaffold2738_ A11	31 739	35 214	2 031	676	AT2G46480.1	GAUT2	GAUT-A
G. raimondii	GrGAUT01	Gorai.001G104800	Chr01	11 739 260	11 742 665	1 713	570	AT3G25140.1	GAUT8	GAUT-B
	GrGAUT02	Gorai.001G172800	Chr01	24 959 043	24 963 513	2 034	677	AT1G18580.1	GAUT11	GAUT-B
	GrGAUT03	Gorai.001G188500	Chr01	30 394 865	30 398 560	1 779	592	AT3G25140.1	GAUT8	GAUT-B
	GrGAUT04	Gorai.001G205700	Chr01	40 061 128	40 063 974	1 677	558	AT3G02350.1	GAUT9	GAUT-B
	GrGAUT05	Gorai.001G243400	Chr01	48 406 329	48 410 709	1 803	600	AT1G06780.1	GAUT6	GAUT-A
	GrGAUT06	Gorai.002G013600	Chr02	881 738	888 088	1 854	617	AT4G38270.1	GAUT3	GAUT-A
	GrGAUT07	Gorai.002G082100	Chr02	10 361 510	10 364 854	1 608	535	AT5G54690.1	GAUT12	GAUT-C
	GrGAUT08	Gorai.004G074600	chr04	8 330 249	8 333 832	1 098	365	AT1G06780.1	GAUT6	GAUT-A
	GrGAUT09	Gorai.004G155600	Chr04	44 036 606	44 041 193	2 022	673	AT2G46480.1	GAUT2	GAUT-A
	GrGAUT10	Gorai.004G219100	Chr04	55 255 869	55 260 007	1 746	581	AT1G06780.1	GAUT6	GAUT-A
	GrGAUT11	Gorai.005G129100	Chr05	31 303 031	31 309 906	1 830	609	AT2G38650.1	GAUT7	GAUT-A
	GrGAUT12	Gorai.006G236100	Chr06	48 377 701	48 383 955	1 833	610	AT2G38650.1	GAUT7	GAUT-A
	GrGAUT13	Gorai.007G040000	Chr07	2 785 971	2 790 164	1 605	534	AT1G18580.1	GAUT11	GAUT-B
	GrGAUT14	Gorai.007G081500	Chr07	5 820 168	5 825 079	1 605	534	AT3G01040.1	GAUT13	GAUT-C
	GrGAUT15	Gorai.007G093500	Chr07	6 832 789	6 837 085	2 034	677	AT2G46480.1	GAUT2	GAUT-A
	GrGAUT16	Gorai.007G142400	Chr07	11 853 941	11 858 955	1 797	598	AT1G06780.1	GAUT6	GAUT-A
	GrGAUT17	Gorai.008G059800	Chr08	9 388 299	9 391 237	1 686	561	AT3G02350.1	GAUT9	GAUT-B
	GrGAUT18	Gorai.010G190800	Chr10	54 465 897	54 470 520	1 866	621	AT2G30575.1	GAUT5	GAUT-A
	GrGAUT19	Gorai.012G042500	Chr12	5 361 960	5 369 902	1 611	536	AT3G58790.1	GAUT15	GAUT-C

Table 1	hromosomal lu	ocus ID and lengt	h of the encoded	d galacturon	iosyltransfera	ise proteins in	cotton (Continued	(
cotton species	Gene model	Ð	Chromosomes	Start	End	CDS length / bp	Protein length / aa	Arabidopsis ortholog	Arabidopsis protein description	classification
	GrGAUT20	Gorai.012G049900	Chr12	6 493 884	6 500 082	1 677	558	AT3G01040.1	GAUT13	GAUT-C
	GrGAUT21	Gorai.012G131400	Chr12	30 042 007	30 046 372	1 605	534	AT1G18580.1	GAUT11	GAUT-B
	GrGAUT22	Gorai.013G063700	Chr13	7 098 252	7 102 442	2 049	682	AT4G38270.1	GAUT3	GAUT-A

	ğ	
	2	
1	5	
	5	
(З	
`	=	
	2	
	Ħ	
	ŭ	
	_	
•	=	
	Š	
•	늞	
	Ĕ	
	2	
	Ω	
	Φ	
	ß	
	5	
ç	Ψ	
	2	
	ติ	
2	┢	
	\geq	
	ö	
	Ē	
	9	
	⋽	
	せ	
	σ	
	ğ	
	O	
1	ğ	
-	g	
	ŏ	
	2	
	5	
	a.	
	e	
	₽	
C	╘	
	2	
7	누	
	ğ	
	5	
-	-	
	ğ	
	E	
	~	
2		
	ഗ	
	2	
	X	
-	-	
	σ	
	E	
	ō	
	S	
	ĕ	
	F	
	Ľ	
ī	5	
	\mathcal{I}	
	_	
1		
	<u>م</u>	

GAUT-C

GAUT12

AT5G54690.1

534

Gorai.013G164000 Chr13

GrGAUT23

AtGAUT3, AtGAUT11, AtGAUT12, and AtGAUT13, respectively, and were also segment repeats. Genes in diploid *Gossypium* species corresponding to the above repeated genes were shown in Fig. 3. According to their relative order in *Gossypium*, GAUT genes were categorized into five groups (1 to 5). Only group 4 belongs to *GAUT-A*, all other groups were members of *GAUT-C*.

Analysis of GAUTs transcription patterns

As determined by collinearity and repetitive element analyses of the above homologous genes in combination with transcriptome data from different fiber developmental stages of diploid Gossypium species, GaGAUT02 had the highest transcript level at 15 DPA but almost no transcription during other periods. Other members of group 1 (Fig. 3) were also barely transcribed in G. raimondii and tetraploid cotton, with fragments per kilobase of transcript per million fragments mapped (FPKM) values of less than 2.0. In group 2, GhGAUT15 and GhGAUT34 had the highest transcript level during the late stage (20 to 25 DPA) of fiber development (Fig. 4). Group 3 members GhGAUT16, GhGAUT36, GrGAUT14, and GaGAUT22 were not transcribed at all during the fiber developmental period. Among group 4 genes, GhGAUT17 and GhGAUT38 had their highest transcript level during fiber developmental from 5 to 10 DPA, and GrGAUT22 and GaGAUT24 had the peak transcript level at 0 and 15 DPA, respectively. All members of group 5 except for GaGAUT25 were transcribed at 15 DPA, and the remaining genes had almost no transcription during fiber development. In four cotton species, six genes, namely *GaGAUT08*, *GaGAUT12*, *GaGAUT13*, *GrGAUT03*, *GrGAUT18*, and *GhGAUT25*, had peak FPKM values greater than 40. The expression peak of these six genes all occurred before 15 DPA, which suggested that the GAUT gene family play a important role in early cotton fiber development.

We selected a RIL population containing high-strength fiber and low-strength fiber lines for quantitative real time polymerase chain reaction (qRT-PCR) analysis (Wang et al. 2014). For this analysis, we selected GhGAUT08 (Gh_A07G1907) (Zou et al. 2019) and GhGAUT25 which belonged to GAUT-A, and and GhGAUT10, GhGAUT11 GhGAUT29 which belonged to GAUT-B. And all had FPKM values greater than 10 (Tables 2,3,4, and 5). The qRT-PCR analysis revealed that the GAUT genes had an important influence on fiber development before 15 DPA. From 5 to 30 DPA, the overall transcript levels of GhGAUT08 and GhGAUT10 were higher in high fiber-strength materials than those in low strength materials. At 5 DPA, the transcript levels of GhGAUT11 and GhGAUT29 were higher in low fiber-strength materials than those in high strength materials, with the opposite trend from 10 to 30 DPA. The transcript level of GhGAUT25 was higher in low fiber-strength materials than high strength materials from 5 to 10 DPA, with the reverse pattern after 15 DPA. In six high strength materials, peak GAUT expression was from 10 to 15 DPA (Fig. 5),

whereas the period of highest expression in six low-strength materials was 5 to 10 DPA (Fig. 5).

Analysis of the *cis*-elements in the promoter regions GAUT genes

Since the GAUT gene family affect the synthesis of pectin, we measured the pectin content of different materials. The results showed that the peak pectin content of high strength fiber materials appeared at 15 DPA, while the low strength materials appeared at 10 DPA (Fig. 6). This result was similar to the pattern of gene transcription.

To investigate the potential reasons for different expression patterns among GAUT genes, we analyzed the promoter region of the GAUT gene family in upland cotton. This analysis was performed because *cis*-elements (Fig. 7) can affect gene expression (Higo et al. 1999). The 32 *cis*-elements were detected in the

promoter region of the 41 GAUT genes in upland cotton. The 32 cis-elements contained motifs that belonged to the regulatory sequences that responsive to anaerobicity, abiotic stress and hormone signaling. CGTCA and TGACG elements are associated with responsiveness to methyl jasmonate (Me-JA) (Basyuni et al. 2018), while the GARE-motif (TCTGTTG) and P-box (CCTTTTG) are related to gibberellin (GA) (Porto et al. 2014). The TCA-element (CCATCTTTT) is a salicylic acid (SA) responsive element (Herrera-Vásquez et al. 2015). AuxRR-core (GGTCCAT) and the TGA-element (AACGAC) are related to the responsiveness to auxin (Herrera-Vásquez et al. 2015), and the ABRE-motif (ACGTG) is associated with the abscisic acid (ABA) response (Mishra et al. 2014). The ARE-motif (AAACCA) is related to the anaerobic environment, while the LTRmotif (CCGAAA) participates in response to low temperature (Chen et al. 2018). Finally, the TC-rich repeats (ATTCTCTAAC) is the response element associated with stress (Wei et al. 2009).

Transcription analysis of prominent fiber-expressed genes under abiotic stress and phytohormone treatments

For a more in-depth study of *GhGAUTs* transcript levels induced by abiotic stress, the transcription patterns of five *GhGAUT* genes in cotton with NaCl, PEG, abscisic acid (ABA), naphthylacetic acid (NAA), salicylic acid (SA), and methyl jasmonate (MeJA) treatments were analyzed by qRT-PCR (Fig. 8). We examined the effects of various hormones on the transcription of the five GhGAUT genes. We observed that within 1 h after all treatments, the relative transcript levels of these five genes were rapidly increased and then decreased after 24 h. The peak transcription levels of the upregulated gene came between 3 h and 12 h, except for GhGAUT11. GhGAUT11 did not respond to the treatment of three hormones ABA, SA, and MeJA. GhGAUT29 responded to all stresses and hormone treatments, and the detected transcript levels were higher. GhGAUT08 responded to ABA and SA treatments with the higher transcript levels. GhGAUT25 also responded to two stresses and four hormone treatments, but the transcript levels were the highest under the treatment of PEG and ABA, and the response peaks came at 6 h and 12 h after treatments, respectively. GhGAUT10 also responded to the treatments of ABA, SA, and MeJA, with the peak transcript levels at 6 h, 12 h, and 12 h; the response levels to NACl, PEG and NAA treatment was low at 3 h and 6 h, respectively. These results indicated that after different hormone treatments, different genes had different response times and response patterns, which were closely related to their hormone response elements and expression patterns.

Discussion

Phylogenetic analysis of the GAUT gene family

Researches on the GAUT gene family currently focused on *Arabidopsis* (Sterling et al. 2006; Cantarel et al.

2008), tomato (Godoy et al. 2013; Vasco et al. 2011), ramie (Chen et al. 2014), sweet cherry (Campoy et al. 2015), and the other species. Studies have also been carried out in cotton, but systematically evolutionary

analysis has not yet been conducted. Among 131 GAUT members in cotton, 20 are homologous to *AtGAUT6*; no gene in cotton is homologous to *AtGAUT14*, and no *AtGAUT5* homolog was present in *G. hirsutum*.

Gene model	ID	0 DPA	3 DPA	6 DPA	10 DPA	15 DPA
Ga01G0140	GaGAUT01	0.04	0.00	0.02	0.05	0.03
Ga01G0796	GaGAUT02	0.04	0.15	0.19	0.65	79.57
Ga03G0997	GaGAUT03	2.65	5.51	4.86	6.06	5.33
Ga04G0446	GaGAUT04	17.91	16.45	17.27	13.14	6.62
Ga04G1634	GaGAUT05	6.43	9.64	5.77	6.85	9.92
Ga04G1718	GaGAUT06	5.40	8.04	3.06	5.33	4.01
Ga05G1886	GaGAUT07	11.15	13.59	8.43	7.89	17.68
Ga06G1924	GaGAUT08	20.44	39.23	49.70	28.73	19.21
Ga07G2432	GaGAUT09	1.47	3.84	3.56	4.07	5.00
Ga07G1617	GaGAUT10	3.65	8.38	5.67	3.41	2.82
Ga07G2025	GaGAUT11	7.05	14.31	23.29	16.95	17.30
Ga07G1793	GaGAUT12	97.22	104.53	#####	122.70	59.66
Ga07G1005	GaGAUT13	29.80	39.13	75.55	40.56	39.00
Ga08G2216	GaGAUT14	0.60	0.15	0.31	0.12	0.31
Ga08G0724	GaGAUT15	0.00	0.00	0.03	0.00	0.03
Ga08G1537	GaGAUT16	16.38	21.55	18.07	15.19	17.47
Ga09G2452	GaGAUT17	4.84	9.73	6.85	6.38	6.36
Ga09G0159	GaGAUT18	0.17	0.48	0.34	0.46	0.38
Ga11G2709	GaGAUT19	4.08	8.46	6.26	6.86	8.21
Ga11G3730	GaGAUT20	13.06	10.67	12.06	8.77	9.09
Ga11G3192	GaGAUT21	4.77	8.87	10.25	7.52	11.48
Ga11G3319	GaGAUT22	0.42	0.76	0.46	0.36	0.76
Ga12G2518	GaGAUT23	4.01	5.25	7.88	5.31	10.94
Ga13G0584	GaGAUT24	3.92	3.59	4.68	2.84	9.19
Ga13G1828	GaGAUT25	0.84	0.26	1.16	0.16	3.59

Table 2 The FPKM value of GAUT genes in G. arboreum

The GAUT gene family encodes galacturonosyltransferases involved in the synthesis of pectin, a compound related to cell wall formation. The conserved domain of the GAUT protein is H-DN-A-SVV-S-V-H-T-F. In tomato, GAUT1 protein had been predicted to be a membrane protein with a single N-terminal transmembrane helix and a major globular domain in the Golgi cavity, however, there was no report about the function of pectin synthesis and its role in fiber development. Analyses of the GAUT gene family have shown that all members share a conserved glycosyltransferase family 8 domain (Godoy et al. 2013; Vasco et al. 2011). In addition, GAUT proteins in the four species of cotton have a PLN02769 domain. 14 GAUT genes are homologous to GAUT7, two of which are present in G.raimondii, and 4 in other three species.

The possible role of the GAUT gene family in fiber development

The formation of bast fiber is an important quality trait in ramie. The development of ramie fiber affecting the rate of hemp formation and ultimately the economic value of ramie directly (Chen et al. 2014). Analysis of the cDNA sequence of ramie GalAT, a key pectin biosynthetic homolog of GAUT4, has showed that most GAUT4 transcript accumulates in roots, followed by leaves, phloem, and xylem (Liu et al. 2009). Similar to the situation in hemp, the development of cotton fiber cells is the main factor affecting cotton fiber quality (Haigler et al. 2012). GbGAUT1, a high galacturonic acid (HG) GAUT protein contains a conserved glycosyl transferase family 8 domain, falls into group GAUT-A in the phylogenetic tree and is preferentially expressed during fiber secondary cell wall thickening, especially at 35 DPA. These results indicate that the GbGAUT1 gene may play an important role in fiber development (Chi et al. 2009).

In our study, the peak expression of GhGAUT genes was concentrated before 15 DPA. In six high-strengthfiber materials, the highest expression was from 10 to 15 DPA, when the periods of fiber secondary wall thickening and fiber elongation overlap (Ji 2011). In the lowGene model

Gorai.001G104800

Gorai.001G172800

Gorai.001G188500

Gorai.001G205700

Gorai.001G243400

Gorai.002G013600

Gorai.002G082100

Gorai.004G074600

Gorai.004G155600

Gorai.004G219100

Gorai.005G129100

Gorai.006G236100

Gorai.007G040000

Gorai.007G081500

Gorai.007G093500

Gorai.007G142400

Gorai.008G059800

Gorai.010G190800

Gorai.012G042500

Gorai.012G049900

Gorai.012G131400

Gorai.013G063700

Gorai.013G164000

gei	nes in <i>G. raimor</i> i	ndii				
	0 DPA	3 DPA	6 DPA	10 DPA	15 DPA	
	13.13	0.94	11.94	0.00	0.00	
	2.95	0.41	7.31	6.03	5.36	
	13.30	4.76	72.76	70.32	87.30	
	6.77	1.11	20.09	17.12	15.52	
	2.35	0.60	5.99	7.27	8.03	
	0.16	0.00	0.57	0.59	0.36	
	0.00	0.00	0.19	0.00	0.53	
	0.13	0.00	0.09	0.04	0.20	

0.00

1.91

2.88

3.57

6.00

0.00

1230

5.33

5.76

37.46

0.00

3.08

16.99

0.00

0.48

0.00

1.35

5.34

3.26

7.97

0.00

1155

3.80

5.78

40.83

0.00

2.07

13.68

0.00

0.45

0.00

2.82

4.85

5.66

7.31

0.00

16.21

6.24

8.11

41.49

0.00

3.75

18.23

0.00

0.33

0.00

0.07

0.81

0.00

0.27

0.00

5.83

0.88

0.91

3.20

0.00

0.56

4.86

0.99

0.00

Table 3 The FPKM value of GAUT genes in G. raimondii

GrGAUT01

GrGAUT02

GrGAUT03

GrGAUT04

GrGAUT05

GrGAUT06

GrGAUT07

GrGAUT08

GrGAUT09

GrGAUT10

GrGAUT11

GrGAUT12

GrGAUT13

GrGAUT14

GrGAUT15

GrGAUT16

GrGAUT17

GrGAUT18

GrGAUT19

GrGAUT20

GrGAUT21

GrGAUT22

GrGAUT23

3.27

1.12

3.01

2.61

2.20

0.31

4.58

2.17

2.08

14.82

0.00

1.93

12.74

3.62

0.74

ID

strength lines, the expression of *GhGAUT* genes was concentrated between 5 to 10 DPA, which corresponds to the fiber elongation period (Fan 2013).

Relationship between pectin substances and cotton fiber quality

As is well known, cotton fiber cells develop from a single cell, and their main components are cellulosic materials and pectin substances (Wang 2012). Pectin synthesis and decomposition affect cotton fiber strength (Fan 2013). Pectin methylesterase (PME), a common enzyme in plants that is related to cell wall structure, participates in pectin decomposition and catalyzes pectin deesterification to produce pectate and methanol (Fan 2013; Li et al. 2016). According to previous studies, PME levels increased during fiber development, with the lowest enzyme activity found in high-strength-fiber cultivars (Fan 2013; Li 2016). By comparing multiple transcriptome datasets, Guo et al. (2007) identified two genes related to pectin esterase, which is involved in the hydrolysis of pectin to gelatinic acid, and the expression of these genes were sharply upregulated starting at 12 DPA. In addition, two enzymes involved in pectin synthesis,

UDP-glucose 6-dehydrogenase and UDP-D-glucuronic acid 4-epimerase, were down-regulated during secondary wall synthesis. The anthors found that the amount of pectin was decreased in cells at the late stage of cotton fiber development (Gou et al. 2007). Research based on immunohistochemistry has revealed that unesterified homogalacturonan is sparse in epidermal cells, which do not develop into fibers, whereas this compound is abundant in elongated cotton fiber cells (Zhao et al. 2012). The above-mentioned observations suggest that pectin synthesis affects early fiber development, and the hydrolysis of pectin is related to the formation of fibers during the later stage.

Conclusions

In this study, we characterized the GAUT gene family associated with pectin synthesis by analyzing their phylogenetic relationships, conserved motifs, gene structures, promoter sequences, and expression in cotton lines having different fiber strengths. Comprehensive expression and bioinformatics analysis indicated that the peak expression of *GhGAUT* genes was concentrated before 15 DPA. Gene expression in the six materials with

Table 4 The FPKM value of GAUT genes in G. barbadense _

Gene model	ID	10 DPA	15 DPA	18 DPA	21 DPA	28 DPA	
GOBAR_AA01456	GbGAUT01	0.01	0.00	0.00	0.00	0.00	
GOBAR_AA00301	GbGAUT02	0.04	0.01	0.50	0.04	0.28	
GOBAR_AA01219	GbGAUT03	10.48	10.76	14.62	9.76	10.01	
GOBAR_AA02321	GbGAUT04	6.93	15.84	12.14	14.85	12.65	
GOBAR_AA25346	GbGAUT05	1.54	1.43	1.19	1.21	2.19	
GOBAR_AA13922	GbGAUT06	5.59	5.50	4.78	4.91	1.95	
GOBAR_AA10943	GbGAUT07	45.27	41.40	22.30	31.44	17.28	
GOBAR_AA06647	GbGAUT08	4.44	3.20	4.10	3.13	4.90	
GOBAR_AA01514	GbGAUT09	30.41	28.78	25.56	26.60	25.26	
GOBAR_AA37671	GbGAUT10	29.24	31.37	28.77	27.95	17.48	
GOBAR_AA14268	GbGAUT11	20.94	18.81	15.18	17.15	11.50	
GOBAR_AA04077	GbGAUT12	0.02	0.01	0.02	0.01	0.00	
GOBAR_AA34869	GbGAUT13	17.90	19.76	23.95	19.18	22.65	
GOBAR_AA07870	GbGAUT14	1.31	0.85	0.46	0.67	0.18	
GOBAR_AA36945	GbGAUT15	5.22	4.46	3.95	3.97	3.52	
GOBAR_AA25184	GbGAUT16	21.04	26.67	29.70	26.49	41.24	
GOBAR_AA35174	GbGAUT17	0.62	0.64	0.70	0.54	0.81	
GOBAR_AA22791	GbGAUT18	5.62	6.42	11.06	6.51	10.14	
GOBAR_AA03897	GbGAUT19	7.78	6.91	5.00	6.68	2.60	
GOBAR_AA05453	GbGAUT20	0.26	0.18	0.48	0.27	0.22	
GOBAR_AA14759	GbGAUT21	1.23	1.04	0.33	0.90	0.01	
GOBAR_DD05031	GbGAUT22	0.00	0.00	0.00	0.01	0.00	
GOBAR_DD13138	GbGAUT23	0.07	0.04	0.26	0.06	0.17	
GOBAR_DD33622	GbGAUT24	2.93	3.29	1.99	2.91	1.30	
GOBAR_DD37379	GbGAUT25	3.39	3.86	3.01	3.67	1.15	
GOBAR_DD20347	GbGAUT26	3.66	4.18	3.24	4.01	1.26	
GOBAR_DD28302	GbGAUT27	1.32	1.17	1.54	1.16	5.85	
GOBAR_DD32865	GbGAUT28	42.92	37.70	23.37	29.94	18.16	
GOBAR_DD34963	GbGAUT29	5.21	3.51	4.02	3.19	2.97	
GOBAR_DD05509	GbGAUT30	6.76	7.91	7.69	7.43	7.44	
GOBAR_DD33929	GbGAUT31	26.33	27.23	25.11	24.79	23.75	
GOBAR_DD27569	GbGAUT32	25.99	22.78	16.21	18.16	12.44	
GOBAR_DD14647	GbGAUT33	37.89	41.23	39.75	36.68	45.19	
GOBAR_DD04306	GbGAUT34	24.68	32.42	28.71	26.97	35.18	
GOBAR_DD07609	GbGAUT35	0.05	0.00	0.01	0.02	0.00	
GOBAR_DD34943	GbGAUT36	1.69	1.75	1.29	1.46	0.29	
GOBAR_DD05442	GbGAUT37	2.76	2.21	2.04	1.86	2.93	
GOBAR_DD22761	GbGAUT38	4.72	5.52	4.74	3.81	4.89	
GOBAR_DD24858	GbGAUT39	17.74	23.75	22.63	23.55	15.60	
GOBAR_DD38263	GbGAUT40	2.53	2.71	2.83	2.34	2.29	
GOBAR_DD34814	GbGAUT41	3.99	5.13	8.02	5.42	5.95	
GOBAR_DD11145	GbGAUT42	0.16	0.03	0.24	0.04	0.09	

 Table 5 The FPKM value of GAUT genes in G. hirsutum

Gene model	ID	root	stem	leaf	5 DPA fiber	10 DPA fiber	20 DPA fiber	25 DPA fiber
Gh_A01G0568	GhGAUT01	2.69	1.36	18.75	0.07	0.02	1.06	2.84
Gh_A02G0896	GhGAUT02	4.50	4.39	7.51	5.01	1.96	4.07	6.83
Gh_A04G0911	GhGAUT03	4.95	4.39	5.79	6.02	6.15	5.31	4.12
Gh_A05G3203	GhGAUT04	5.91	12.21	5.92	5.05	3.80	4.57	4.90
Gh_A05G3268	GhGAUT05	13.72	3.94	15.45	6.10	4.66	4.36	9.24
Gh_A05G1520	GhGAUT06	6.67	7.43	7.86	14.36	14.49	7.63	8.40
Gh_A06G1385	GhGAUT07	12.62	10.45	18.91	37.20	41.63	5.77	10.38
Gh_A07G1907	GhGAUT08	4.47	8.20	1.24	3.04	2.59	8.15	5.55
Gh_A07G1602	GhGAUT09	4.67	2.65	5.92	14.99	17.92	7.29	8.58
Gh_A07G1480	GhGAUT10	22.20	16.95	23.86	17.97	15.28	17.72	26.25
Gh_A07G0842	GhGAUT11	20.23	14.72	23.33	24.01	23.32	11.06	13.40
Gh_A07G1344	GhGAUT12	3.98	1.08	4.70	4.15	4.10	2.43	3.75
Gh_A08G1146	GhGAUT13	15.55	9.08	12.80	9.81	7.43	10.44	12.05
Gh_A11G1169	GhGAUT14	10.10	5.59	6.22	5.34	3.61	6.04	5.68
Gh_A11G0310	GhGAUT15	3.80	4.30	2.65	1.33	0.78	3.85	3.78
Gh_A11G0648	GhGAUT16	0.84	0.79	1.68	1.59	1.71	1.21	1.61
Gh_A13G0573	GhGAUT17	2.71	5.42	4.07	5.08	6.14	3.43	5.11
Gh_A13G1199	GhGAUT18	0.55	0.06	1.83	0.32	0.24	0.17	1.15
Gh_D01G0577	GhGAUT19	1.80	0.79	13.13	0.04	0.02	0.96	2.56
Gh_D02G1116	GhGAUT20	4.95	3.94	6.05	8.15	5.38	3.73	7.89
Gh_D04G1424	GhGAUT21	5.00	5.29	5.20	4.14	2.46	2.38	3.89
Gh_D04G0402	GhGAUT22	5.31	9.34	4.77	4.25	4.04	4.31	4.52
Gh_D04G0340	GhGAUT23	15.34	2.59	14.94	5.79	6.26	3.44	7.55
Gh_D05G1691	GhGAUT24	5.12	3.32	7.47	4.25	2.83	11.93	8.28
Gh_D06G1729	GhGAUT25	14.69	10.26	18.32	41.09	48.94	7.24	9.88
Gh_D07G2130	GhGAUT26	3.78	3.86	2.44	2.93	2.05	8.21	5.23
Gh_D07G1799	GhGAUT27	6.53	3.87	5.70	13.20	16.98	7.38	8.29
Gh_D07G0913	GhGAUT28	19.85	12.38	17.22	20.97	22.64	13.23	14.94
Gh_D07G1583	GhGAUT29	24.72	16.46	31.64	27.44	22.77	20.91	24.89
Gh_D07G1453	GhGAUT30	3.22	0.79	3.07	3.75	3.27	2.25	3.05
Gh_D08G1429	GhGAUT31	8.65	5.42	8.31	6.68	6.18	4.61	5.79
Gh_D09G2061	GhGAUT32	2.59	2.34	3.55	7.04	5.11	4.61	7.16
Gh_D11G1324	GhGAUT33	8.25	6.34	6.75	3.42	2.60	5.80	5.32
Gh_D11G0365	GhGAUT34	4.49	5.13	3.89	2.06	1.26	3.99	5.13
Gh_D11G0880	GhGAUT35	4.60	2.63	5.80	7.97	12.90	7.35	9.40
Gh_D11G0760	GhGAUT36	1.77	0.85	2.79	2.11	1.45	1.11	1.39
Gh_D12G0542	GhGAUT37	3.29	1.62	3.31	3.31	2.95	4.44	3.81
Gh_D13G0555	GhGAUT38	4.33	5.66	3.37	7.61	7.61	3.31	4.24
Gh_D13G1495	GhGAUT39	0.67	0.32	1.90	0.41	0.11	0.17	1.12
Gh_A09G2268	GhGAUT40	4.82	4.45	5.48	7.20	5.97	5.25	10.16
Gh_A11G3052	GhGAUT41	5.37	3.17	6.77	9.65	15.14	13.75	14.55

high-strength fiber were concentrated between 10 and 15 DPA, corresponding to the beginning of the fiber secondary wall thickening period and part of the fiber elongation and thickening phase. In contrast, GAUT gene expression in six materials with low-strength fiber was at the highest level from 5 to 10 DPA, which was the fiber elongation period. The result lays the foundation for future researches associated with pectin synthesis during cotton fiber development.

Methods

Identification of cotton GAUT family members

To identify all homologous *GAUT* gene family in *Arabidopsis* (Sterling et al. 2006), we used a Hidden Markov Model integrated in HMMER 3.0 (Finn et al. 2011) to search for the glycosyl transferase family 83 (PF01501) in the following species: *Carica papaya* L. (Tang et al. 2008) (http://www.phytozome.net), *Theobroma cacao* (Argout et al. 2011), *G. raimondii* (Wang et al. 2012)

Fig. 7 Analysis of *cis*-elements in *GhGAUT* genes. 32 *cis*-elements in upland cotton genes were analyzed, namely, elements responsive to anaerobic conditions, different hormones (Me-JA, GA, SA, ABA and IAA), and abiotic stress conditions, including drought, low temperature and other stress conditions

(http://www.phytozome.net), *Oryza sativa* (Du et al. 2017) (http://www.mbkbase.org/R498/), *A. thaliana* (Cao et al. 2011;) (http://www.arabidopsis.org), *G. barba-dense* (Liu et al. 2015) (http://database.chgc.sh.cn/

cotton/index.html), *G. hirsutum* (Li et al. 2015; Zhang et al. 2015) (http://mascotton.njau.edu.cn), and *G. arboreum* (Du et al. 2018) (ftp://bioinfo.ayit.edu.cn/downloads/). The sequences were verified using BLASTp

Gene model	ID	Forward primer	Reverse primer
Gh_A07G1907	GhGAUT08	CTGCGGTTCTATCTGCCAGACG	TCTTTGCCAAAAACGGGTCCGA
Gh_A07G1480	GhGAUT10	CTTGCTGCATCCGTAGTGGTGA	ACCTGCATTGCCCCAAGATTCA
Gh_A07G0842	GhGAUT11	TGGTGCACTTCAACGGGAACAT	TGCAGGCCTGTACAAACTCCAG
Gh_D06G1729	GhGAUT25	TAGGGTCGGCTCCTTCGTCAAT	CAATGGGTTCTTTCAAGGCGGC
Gh_D07G1583	GhGAUT29	AAGGAGGTCCGTTTTGGCACTC	CTTTCGAGCGTAGGAGGCGTAG

Table 6 [etails of	primers [·]	for c	quantitative	real-time	PCR
-----------	-----------	----------------------	-------	--------------	-----------	-----

with *AtGAUT* sequences as the query sequences and an e-value threshold of 1×10^{-5} . After multiple sequence alignment in ClustalW program (Thompson et al. 2003), incomplete sequences were manually deleted.

Phylogenetic tree construction, analysis of gene structure and localization

A neighbor-joining phylogenetic tree was constructed from the aligned sequences using MEGA v6.06 with 1 000 bootstrap repeats. To confirm GAUT gene structure in *Gossypium* species, information about the exons and introns of GAUT genes was retrieved from the GFF3 file, and the exon/intron structures were visualized using the Gene Structure Display Server 2.0 (Hu et al. 2015). Conserved domains were predicted using a conserved domain database (http:// www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) (Marchler et al. 2010). Motifs were explored using the MEME program (http://meme.nbcr.net/meme) (Bailey et al. 2006), with the maximum number of motifs set to 20. Analysis and visualization of the chromosomal distribution of the GAUT genes were carried out using MapChart 2.2 (Voorrips 2002).

Promoter region and collinearity analysis of four cotton species

The promoter region of 41 *GhGAUT* genes were analyzed. Analysis of *cis*-acting elements was carried out using the PlantCARE database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html) (Lescot et al. 2002), The 32 *cis*-elements were detected in the promoter region of the 41 GAUT genes in upland cotton. The 32 *cis*-elements contain motifs that have characteristic of regulatory sequences in response to anaerobicity, abiotic stress and hormone signaling. Repetitive elements in the GAUT gene family were identified by collinear analysis using the entire BLAST array (e-value = 1×10^{-5}) in the MCScan (Tang et al. 2008).

Plant materials

Plants were grown using standard field management practices in Anyang, China. One hundred and ninty-six RIL populations were constructed with 0-153 and 9708 as parents, and 5 lines with high fiber strength and 5 lines with low fiber strength were screened. 0-153 were a high-value parents in fiber characters and 9708 were a low-value parents. Plant materials consisted six highfiber-strength lines and six low-fiber-strength lines from a RILs populations (Sun et al. 2012). The date of flowering was recorded as 0 days post-anthesis (0 DPA). Cotton bolls were sampled every 5 days from 0 to 30 DPA. After collection, fibers were separated from the cotton bolls with a sterile knife, immediately froze in liquid nitrogen, and stored at 80 °C, another part of fiber samples were dried at 45 °C for determination of pectin content. RNA was extracted from cotton fiber tissues, reversetranscribed into cDNA. The cDNA was stored at -20 °C for subsequent qRT-PCR experiments with three biological replicates (Tuttle et al. 2015).

Transcriptome analyses and qRT-PCR

The transcriptome data were downloaded from the Sequence Read Archive (SRA) of the NCBI database (https://www.ncbi.nlm.nih.gov/) (Paterson et al. 2012). The SRA data for *G. raimondii* (PRJNA79005; Wang et al. 2012), *G. barbadense* (PRJNA251673; Liu et al. 2015), *G. hirsutum* (PRJNA248163; Zhang et al. 2015), and *G. arboreum* (PRJNA179447; Du et al. 2018) were converted to FASTQ format data with the SRA Toolkit, and then analyzed and filtered with the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/index.html).

TopHat2 (Kim et al. 2013) was used to map the clean data to the index genomes constructed by Bowtie2 (Langmead and Salzberg 2012) with the library-type and fr-unstranded parameters. The Cufflinks program was used to calculate the transcript levels of the genes in the reference genome (Trapnell et al. 2010). Gene transcript levels (Tables 2,3,4, and 5) were visualized using a normalization method based on log₂ (FPKM + 1) in the pheatmap (https://CRAN.R-project.org/package=pheatmap). qRT-PCR assays of selected genes were performed using specific designed primers (Table 6) on a Roche 480 II PCR system. Gene transcript levels were calculated using the $2^{-\Delta\Delta C}$ t method, and the experimental design included three biological replicates and three technical replicates (Livak and Schmittgen 2001; Pfaffl 2001).

Abbreviations

GAUT: Galacturonosyltransferase; GAUTs: Galacturonosyltransferases; PLN: Phospholamban; DPA: Days post-anthesis; HG: Homogalacturonan; RG II: Rhamnogalacturonan II; HG:GalAT: HGa-1,4-D-Galacturonosyltransferase; GT8: Glycosyltransferase 8; RIL: Recombinant inbred lines; QTLs: Quantitative trait loci; DEGs: Differentially expressed genes; PGSIPs: Protein-like starch starters; GolSs: Galactitol synthase; FPKM: Fragments per kilobase of transcript per million fragments mapped; Q-PCR: Quantitative real time polymerase chain reaction; RT-PCR: Reverse-transcription PCR; qRT-PCR: quantitative realtime PCR; SRA: Sequence Read Archive; ABA: Abscisic acid; NAA: Naphthylacetic acid; SA: Salicylic acid; Me-JA: Methyl jasmonate; GA: Gibberellin; JA: Jasmonate; IAA: Indole acetic acid

Supplementary Information

The online version contains supplementary material available at https://doi. org/10.1186/s42397-021-00099-z.

Additional file 1 Fig. S1: The protein sequences of 187 GAUT genes from eight species: *Gossypium hirsutum*, *Gossypium arboreum*, *Gossypium barbadense*, *Gossypium raimondii*, *Arabidopsis thaliana*, *Oryza sativa*, *Carica papaya*, and *Theobroma cacao*.

Additional file 2 Fig. S2: Logos of 20 motifs for four cotton species according to the MEME suite.

Acknowledgments

Not applicable.

Authors' contributions

Yuan YL and Shang HH conceived and managed the project. Fan SM coordinated the overall project and wrote the manuscript. Liu AY prepared plant materials and extracted RNA, and Zou XY completed the qRT-PCR assay. Zhang Z contributed to the multiple sequence alignments and the phylogenetic analysis. Ge Q helped analyze the data. Gong WK analyzed domains and predicted the promoters. Li JW and Gong JW wrote scripts. Shi YZ contributed to the chromosomal localization and gene structural analysis. Deng XY and Jia TT discussed the results and commented on the manuscript. All authors read, edited, and approved the final version of the manuscript.

Funding

This work was supported by the Major Research Plan of National Natural Science Foundation of China (NO.31690093); the National Agricultural Science and Technology Innovation project for CAAS (CAAS-ASTIP-2016-ICR), and the Central Level of the Scientific Research Institutes for Basic R & D Special Fund Business (Y2017PT51). The funder has no role in the design of the study and collection, analysis, or interpretation of data and writing of the manuscript.

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication

Not applicable.

Competing interests The authors declare no conflict of interest.

Author details

¹State Key Laboratory of Cotton Biology; Key Laboratory of Biological and Genetic Breeding of Cotton, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China. ²School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China.

Received: 24 January 2021 Accepted: 30 June 2021 Published online: 02 August 2021

References

Argout X, Salse J, Aury JM, et al. The genome of *Theobroma cacao*. Nat Genet. 2011;43(2):101–8. https://doi.org/10.1038/ng.736.

- Atmodjo MA, Sakuragi Y, Zhu X, et al. Galacturonosyltransferase (GAUT) 1 and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan: galacturonosyltransferase complex. Proc Natl Acad Sci. 2011;108(50):20225–30. https://doi.org/10.1073/pnas.1112816108.
- Bailey TL, Williams N, Misleh C, et al. MEME: discovering and analyzing DNA and protein sequence motiefs. Nucleic Acid Res. 2006;34(suppl_2):369–73. https://doi.org/10.1093/nar/gkl198.
- Basyuni M, Wati R, Sulistiyono N, et al. Isolation and analysis of a multifunctional triterpene synthase KcMS promoter region from mangrove plant kandelia candel. IOP Conference Series: Earth and Environmental Science. Medan, Indonesia; 2018, 130(1): 012013. doi: https://doi.org/10.1088/1755-1315/13 0/1/012013.
- Caffall KH, Pattathil S, Phillips SE, et al. *Arabidopsis thaliana* T-DNA mutants implicate GAUT genes in the biosynthesis of pectin and xylan in cell walls and seed testa. Mol Plant. 2009;2(5):1000–14. https://doi.org/10.1093/mp/ssp062.
- Campoy JA, Le Dantec L, Barreneche T, et al. New insights into fruit firmness and weight control in sweet cherry. Plant Mol Biol Report. 2015;33(4):783–96. https://doi.org/10.1007/s11105-014-0773-6.
- Cantarel BL, Coutinho PM, Rancurel C, et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acid Res. 2008;37(suppl_1):233–8. https://doi.org/10.1093/nar/gkn663.
- Cao J, Schneeberger K, Ossowski S, et al. Whole-genome sequencing of multiple *Arabidopsis thaliana* populations. Nat Genet. 2011;43(10):956–63. https://doi. org/10.1038/ng.911.
- Chen J, Pei Z, Dai L, et al. Transcriptome profiling using pyrosequencing shows genes associated with bast fiber development in ramie (*Boehmeria nivea* L). BMC Genomics. 2014;15(1):919. https://doi.org/10.1186/1471-2164-15-919.
- Chen J, Piao Y, Liu Y, et al. Genome-wide identification and expression analysis of chitinase gene family in *Brassica rapa* reveals its role in clubroot resistance. Plant Sci. 2018;270:257–67. https://doi.org/10.1016/j.plantsci.2018.02.017.
- Chi JN, Han GY, Wang XF, et al. Isolation and molecular characterization of a novel homogalacturonan galacturonosyl-transferase gene (*GbGAUT1*) from *Gossypium barbadense*. Afr J Biotechnol. 2009;8(19):4755–64. https://doi.org/1 0.4314/ajb.v8i19.65164.
- Du HL, Yu Y, Ma YF, et al. Sequencing and *de novo* assembly of a near complete indica rice genome. Nat Commun. 2017;8(1):15324. https://doi.org/10.1038/ ncomms15324.
- Du XM, Huang G, He SP, et al. Resequencing of 243 diploid cotton accessions based on an updated a genome identifies the genetic basis of key agronomic traits. Nat Genet. 2018;50(6):796–802. https://doi.org/10.1038/s41 588-018-0116-x.
- Durand C, Vicré-Gibouin M, Follet-Gueye ML, et al. The organization pattern of root border-like cells of Arabidopsis is dependent on cell wall homogalacturonan. Plant Physiol. 2009;150(3):1411–21. https://doi.org/10.11 04/pp.109.136382.
- Fan SM. The relationship between the cellulose synthesis and cotton fiber quality. Kaifeng, China: Henan University; 2013.
- Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39(suppl_2):29–37. https://doi.org/10.1 093/nar/gkr367.
- Godoy F, Bermúdez L, Lira BS, et al. Galacturonosyltransferase 4 silencing alters pectin composition and carbon partitioning in tomato. J Exp Bot. 2013;64(8): 2449–66. https://doi.org/10.1093/jxb/ert106.
- Gou JY, Wang LJ, Chen SP, et al. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res. 2007;17(5):422–3. https://doi.org/10.1038/sj.cr.7310150.
- Haigler CH, Betancur L, Stiff MR, et al. Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front Plant Sci. 2012;3:104. https://doi. org/10.3389/fpls.2012.00104.
- Harholt J, Suttangkakul A, Scheller HV. Biosynthesis of pectin. Plant Physiol. 2010; 153(2):384–95. https://doi.org/10.1104/pp.110.156588.
- Herrera-Vásquez A, Salinas P, Holuigue L. Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Front Plant Sci. 2015;6:171. https://doi.org/10.3389/fpls.2015.00171.
- Higo K, Ugawa Y, Iwamoto M, et al. Plant *cis*-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res. 1999;27(1):297–300. https://doi.org/10.1 093/nar/27.1.297.
- Hu B, Jin J, Guo AY, et al. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015;31(8):1296–7. https://doi.org/10.1093/bioinforma tics/btu817.

- Hyodo H, Terao A, Furukawa J, et al. Tissue specific localization of pectin–Ca²⁺ cross-linkages and pectin methyl-esterification during fruit ripening in tomato (*Solanum lycopersicum*). PLoS One. 2013;8(11):e78949. https://doi.org/10.1371/journal.pone.0078949.
- Ji ZB. Gene expression profile analyses of upland cotton (*Gossypium hirsutum*) fiber during secondary cell wall deposition. Wuhan, China: Huazhong Agricultural University; 2011.
- Kikuchi N, Kwon YD, Gotoh M, et al. Comparison of glycosyltransferase families using the profile hidden Markov model. Biochem Biophys Res Commun. 2003;310(2):574–9. https://doi.org/10.1016/j.bbrc.2003.09.031.
- Kim D, Pertea G, Trapnell C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013; 14(4):R36. https://doi.org/10.1186/gb-2013-14-4-r36.
- Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–60. https://doi.org/10.1038/nmeth.1923.
- Lescot M, Déhais P, Thijs G, et al. PlantCARE, a database of plant *cis*-acting regulatory elements and a portal to tools for *in silico* analysis of promoter sequences. Nucleic Acids Res. 2002;30(1):325–7. https://doi.org/10.1093/nar/3 0.1.325.
- Li FG, Fan GY, Lu CR, et al. Genome sequence of cultivated upland cotton (*Gossypium hirsutum* TM-1) provides insights into genome evolution. Nat Biotechnol. 2015;33(5):524–30. https://doi.org/10.1038/nbt.3208.
- Li WJ. Phylogeny analysis of PMEs gene family and function of GhJAZ in cotton. Kaifeng, China: Henan University; 2016.
- Li WJ, Shang HH, Ge Q, et al. Genome-wide identification, phylogeny, and expression analysis of pectin methylesterases reveal their major role in cotton fiber development. BMC Genomics. 2016;17(1):1000. https://doi.org/1 0.1186/s12864-016-3365-z.
- Liu JX, Yu CM, Tang SW, et al. Cloning and expression of key enzyme gene *GalAT* in ramie pectin biosynthesis. Agric Sci China. 2009;8(6):664–70. https://doi. org/10.1016/S1671-2927(08)60262-X.
- Liu X, Zhao B, Chen XY, et al. *Gossypium barbadense* genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci Rep. 2015;5(1):14139. https://doi.org/10.1038/srep14139.
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta C}$ _T method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.
- Marchler BA, Lu S, Anderson JB, et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acid Res. 2010;39(suppl_1): 225–9. https://doi.org/10.1093/nar/gkq1189.
- Mishra S, Shukla A, Upadhyay S, et al. Identification, occurrence, and validation of DRE and ABRE *cis*-regulatory motifs in the promoter regions of genes of *Arabidopsis thaliana*. J Integr Plant Biol. 2014;56(4):388–99. https://doi.org/1 0.1111/jipb.12149.
- Mohnen D. Pectin structure and biosynthesis. Curr Opin Plant Biol. 2008;11(3): 266–77. https://doi.org/10.1016/j.pbi.2008.03.006.
- Orfila C, Sørensen SO, Harholt J, et al. QUASIMODO1 is expressed in vascular tissue of *Arabidopsis* thaliana inflorescence stems, and affects homogalacturonan and xylan biosynthesis. Planta. 2005;222(4):613–22. https://doi.org/10.1007/s00425-005-0008-z.
- Paterson AH, Wendel JF, Gundlach H, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature. 2012;492(7429):423–7. https://doi.org/10.1038/nature11798.
- Pfaffl MW. A new mathematical model for relative quantification in real-time RT– PCR. Nucleic Acids Res. 2001;29(9):e45. https://doi.org/10.1093/nar/29.9.e45.
- Porto MS, Pinheiro MP, Batista VG, et al. Plant promoters: an approach of structure and function. Mol Biotechnol. 2014;56(1):38–49. https://doi.org/10.1 007/s12033-013-9713-1.
- Ridley BL, O'Neill MA, Mohnen D. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry. 2001;57(6):929–67. https://doi.org/10.1016/S0031-9422(01)00113-3.
- Scheller HV, Jensen JK, Sørensen SO, et al. Biosynthesis of pectin. Physiol Plant. 2007;129(2):283–95. https://doi.org/10.1104/pp.110.156588.
- Sterling JD, Atmodjo MA, Inwood SE, et al. Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase. Proceed Natl Acad Sci. 2006;103(13):5236–41. https://doi.org/10.1073/pnas. 0600120103.
- Sun FD, Zhang JH, Wang SF, et al. QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Mol Breed. 2012;30(1): 569–82. https://doi.org/10.1007/s11032-011-9645-z.

Tang H, Bowers JE, Wang X, et al. Synteny and collinearity in plant genomes. Science. 2008;320(5875):486–8. https://doi.org/10.1126/science.1153917.

- Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using Clustal W and Clustal X. Curr Protoc Bioinformatics. 2003;1(1):2–3. https://doi.org/1 0.1002/0471250953.bi0203s00.
- Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5. https://doi.org/10.1038/nbt.1 621.
- Tuttle JR, Nah G, Duke MV, et al. Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation. BMC Genomics. 2015;16(1):477. https://doi.org/10.1186/s12864-015-1708-9.
- Vasco M, De Stefano R, Di Matteo A, et al. Candidate genes controlling fruit quality in a tomato introgression line tolerant to water deficit. In: Proceedings of the Joint Meeting AGI-SIBV-SIGA. Assisi, Italy; 2011. p. 19–22.
- Voorrips RE. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered. 2002;93(1):77–8. https://doi.org/10.1093/jhered/93.1.77.
- Wang KB, Wang ZW, Li FG, et al. The draft genome of a diploid cotton *Gossypium*
- raimondii. Nat Genet. 2012;44(10):1098–103. https://doi.org/10.1038/ng.2371. Wang L, Wang W, Wang YQ, et al. Arabidopsis galacturonosyltransferase (GAUT) 13 and GAUT14 have redundant functions in pollen tube growth. Mol Plant. 2013;6(4):1131– 48. https://doi.org/10.1093/mp/sst084.
- Wang SG. Construction of forward subtractive library and analysis of differentially expressed genes during secondary cell wall thickening stage of upland cotton (*Gossypium hirsutum*) fiber. Wuhan, China: Huazhong Agricultural University; 2012.
- Wang YB, Li CH, Shang HH, et al. Study of cotton matured fibre quality and the super-molecular structure in upland cotton RILs. Fibres Textiles Eastern Europe. 2014;5(107):28–33.
- Wei LY, Zhang DF, Xiang F, et al. Differentially expressed miRNAs potentially involved in the regulation of defense mechanism to drought stress in maize seedlings. Int J Plant Sci. 2009;170(8):979–89. https://doi.org/10.1086/605122.
- Willats WG, Knox JP, Mikkelsen JD. Pectin: new insights into an old polymer are starting to gel. Trends Food Sci Technol. 2006;17(3):97–104. https://doi.org/1 0.1016/j.tifs.2005.10.008.
- Yin Y, Chen H, Hahn MG, et al. Evolution and function of the plant cell wall synthesis-related glycosyltransferase family 8. Plant Physiol. 2010a;153(4): 1729–46. https://doi.org/10.1104/pp.110.154229.
- Yin Y, Mohnen D, Xu Y, et al. Glycosyltransferases of the GT8 family. Ann Plant Rev Plant Polysaccharides Biosynthesis Bioeng. 2010b;41:167–211. https:// doi.org/10.1002/9781444391015.ch6.
- Zhang TZ, Hu Y, Jiang W, et al. Sequencing of allotetraploid cotton (*Gossypium hirsutum* L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015;33(5):531–7. https://doi.org/10.1038/nbt.3207.
- Zhang Z, Ge Q, Liu AY, et al. Construction of a high-density genetic map and its application to QTL identification for fiber strength in upland cotton. Crop Sci. 2017;57(2):774–88. https://doi.org/10.2135/cropsci2016.06.0544.
- Zhao L, Ding Q, Zeng J, et al. Immunohistochemical study of cell wall pectin during cotton fiber development. J Chin Electron Microsc Soc. 2012;31(2): 179–83 (in Chinese).
- Zou XY, Liu AY, Zhang Z, et al. Co-expression network analysis and hub gene selection for high-quality fiber in upland cotton (Gossypium hirsutum) using RNA sequencing analysis. Genes. 2019;10(2):119. https://doi.org/10.3390/genes10020119.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

