Avril A, Purcell J, Brelsford A, et al. Asymmetric assortative mating and queen polyandry are linked to a supergene controlling ant social organization. Mol Ecol. 2019;28(6):1428–38. https://doi.org/10.1111/mec.14793.
Article
PubMed
Google Scholar
Dai P, Sun G, Jia Y, et al. Extensive haplotypes are associated with population differentiation and environmental adaptability in upland cotton (Gossypium hirsutum). Theor Appl Genet. 2020;133(12):3273–85. https://doi.org/10.1007/s00122-020-03668-z.
Du X, Huang G, He S, et al. Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nat Genet. 2018;50(6):796–802. https://doi.org/10.1038/s41588-018-0116-x.
Article
CAS
PubMed
Google Scholar
He S, Sun G, Huang L, et al. Genomic divergence in cotton germplasm related to maturity and heterosis. J Integr Plant Biol. 2019;61(8):929–42. https://doi.org/10.1111/jipb.12723.
Article
PubMed
Google Scholar
He S, Wang P, Zhang Y, et al. Introgression leads to genomic divergence and responsible for important traits in upland cotton. Front Plant Sci. 2020;11:929. https://doi.org/10.3389/fpls.2020.00929.
Article
PubMed
PubMed Central
Google Scholar
He S, Sun G, Geng X, et al. The genomic basis of geographic differentiation and fiber improvement in cultivated cotton. Nat Genet. 2021;53:916–24. https://doi.org/10.1038/s41588-021-00844-9.
Article
CAS
PubMed
Google Scholar
Hoffmann AA, Rieseberg LH. Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation? Annu Rev Ecol Evol Syst. 2008;39:21–42. https://doi.org/10.1146/annurev.ecolsys.39.110707.173532.
Article
PubMed
PubMed Central
Google Scholar
Jay P, Chouteau M, Whibley A, et al. Mutation load at a mimicry supergene sheds new light on the evolution of inversion polymorphisms. Nat Genet. 2021;53(3):288–93. https://doi.org/10.1038/s41588-020-00771-1.
Article
CAS
PubMed
Google Scholar
Jia G, Huang X, Zhi H, et al. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet. 2013;45(8):957–61. https://doi.org/10.1038/ng.2673.
Article
CAS
PubMed
Google Scholar
Küpper C, Stocks M, Risse JE, et al. A supergene determines highly divergent male reproductive morphs in the ruff. Nat Genet. 2016;48(1):79–83. https://doi.org/10.1038/ng.3443.
Article
CAS
PubMed
Google Scholar
Lamichhaney S, Fan G, Widemo F, et al. Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat Genet. 2016;48(1):84–8. https://doi.org/10.1038/ng.3430.
Article
CAS
PubMed
Google Scholar
Ma Z, He S, Wang X, et al. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet. 2018;50(6):803–13. https://doi.org/10.1038/s41588-018-0119-7.
Article
CAS
PubMed
Google Scholar
Nazir MF, He S, Ahmed H, et al. Genomic insight into the divergence and adaptive potential of a forgotten landrace G. hirsutum L. purpurascens. J Genet Genomics. 2021; https://doi.org/10.1016/j.jgg.2021.04.009. (in press)
Niles GA, Feaster CV. Breeding. In: Kohel RJ, Lewis CF, editors. Cotton. Madison: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America; 1984. pp. 201–31. https://doi.org/10.2134/agronmonogr24.c7.
Pracana R, Priyam A, Levantis I, et al. The fire ant social chromosome supergene variant Sb shows low diversity but high divergence from SB. Mol Ecol. 2017;26(11):2864–79. https://doi.org/10.1111/mec.14054.
Article
CAS
PubMed
PubMed Central
Google Scholar
Todesco M, Owens GL, Bercovich N, et al. Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature. 2020;584(7822):602–7. https://doi.org/10.1038/s41586-020-2467-6.
Article
CAS
PubMed
Google Scholar
VanKuren NW, Massardo D, Nallu S, et al. Butterfly mimicry polymorphisms highlight phylogenetic limits of gene reuse in the evolution of diverse adaptations. Mol Biol Evol. 2019;36(12):2842–53. https://doi.org/10.1093/molbev/msz194.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wellenreuther M, Bernatchez L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol Evol. 2018;33(6):427–40. https://doi.org/10.1016/j.tree.2018.04.002.
Article
PubMed
Google Scholar
Wendel JF, Brubaker CL, Seelanan T. The origin and evolution of Gossypium. In: Stewart JM, Oosterhuis D, Heitholt JJ, Mauney JR, editors. Physiology of cotton. Dordrecht, Netherlands: Springer; 2010. p.1–18. https://doi.org/10.1007/978-90-481-3195-2_1 .
Yang Z, Ge X, Yang Z, et al. Extensive intraspecific gene order and gene structural variations in upland cotton cultivars. Nat Commun. 2019;10(1):1–13. https://doi.org/10.1038/s41467-019-10820-x.
Article
CAS
Google Scholar
Zhang W, Westerman E, Nitzany E, et al. Tracing the origin and evolution of supergene mimicry in butterflies. Nat Commun. 2017;8(1):1–11. https://doi.org/10.1038/s41467-017-01370-1.
Article
CAS
Google Scholar
Zhou Z, Jiang Y, Wang Z, et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol. 2015;33(4):408–14. https://doi.org/10.1038/nbt.3096.
Article
CAS
PubMed
Google Scholar