Akhtar S, Shahid AA, Rao AQ, et al. Genetic effects of Calotropis procera CpTIP1 gene on fiber quality in cotton (Gossypium hirsutum). Adv Life Sci. 2014;1(4):223–30.
Google Scholar
Akmal M, Baig MS, Khan JA. Suppression of cotton leaf curl disease symptoms in Gossypium hirsutum through over expression of host-encoded miRNAs. J Biotechnol. 2017;263:21–9. https://doi.org/10.1016/j.jbiotec.2017.10.003.
Article
CAS
PubMed
Google Scholar
Ali A, Bang SW, Chung SM, et al. Plant transformation via pollen tube-mediated gene transfer. Plant Mol Biol Rep. 2015;33(3):742–7. https://doi.org/10.1007/s11105-014-0839-5.
Article
CAS
Google Scholar
Anand A, Bass SH, Wu E, et al. An improved ternary vector system for Agrobacterium-mediated rapid maize transformation. Plant Mol Biol. 2018;97(1–2):187–200. https://doi.org/10.1007/s11103-018-0732-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bajwa KS, Shahid AA, Rao AQ, et al. Expression of Calotropis procera expansin gene CpEXPA3 enhances cotton fibre strength. Aust J Crop Sci. 2013;7(2):206–12.
CAS
Google Scholar
Bakhsh A, Rao AQ, Shahid AA, Husnain T. Spatio temporal expression pattern of an insecticidal gene (cry2A) in transgenic cotton lines. Not Sci Biol. 2012;4(4):115–9. https://doi.org/10.15835/nsb448217.
Article
CAS
Google Scholar
Bakhsh A, Anayol E, Özcan SF, et al. An insight into cotton genetic engineering (Gossypium hirsutum L.): current endeavors and prospects. Acta Physiol Plant. 2015;37(8):171. https://doi.org/10.1007/s11738-015-1930-8.
Article
CAS
Google Scholar
Barpete S, Bakhsh A, Anayol E, et al. Inducing osmotic stress leads to better genetic transformation efficiency in cotton (Gossypium hirsutum L.). Turk J Biol. 2016;40(4):826–36. https://doi.org/10.3906/biy-1509-16.
Article
CAS
Google Scholar
Bibi N, Fan K, Yuan S, et al. An efficient and highly reproducible approach for the selection of upland transgenic cotton produced by pollen tube pathway method. Aust J Crop Sci. 2013;7(11):1714.
Google Scholar
Blaise D. Tillage and green manure effects on Bt transgenic cotton (Gossypium hirsutum L.) hybrid grown on rainfed Vertisols of central India. Soil Tillage Res. 2011;114(2):86–96. https://doi.org/10.1016/j.still.2011.04.008.
Article
Google Scholar
Bouchabke-Coussa O, Obellianne M, Linderme D, et al. Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro. Plant Cell Rep. 2013;32(5):675–86. https://doi.org/10.1007/s00299-013-1402-9.
Article
CAS
PubMed
Google Scholar
Chakravarthy VS, Reddy TP, Reddy VD, Rao KV. Current status of genetic engineering in cotton (Gossypium hirsutum L.): an assessment. Crit Rev Biotechnol. 2014;34(2):144–60. https://doi.org/10.3109/07388551.2012.743502.
Article
CAS
PubMed
Google Scholar
Chen TZ, Wu SH, Zhao J, et al. Pistil drip following pollination: a simple in plantaAgrobacterium-mediated transformation in cotton. Biotechnol Lett. 2010;32(4):547–55. https://doi.org/10.1007/s10529-009-0179-y.
Article
CAS
Google Scholar
Chen Y, Rivlin A, Lange A, et al. High throughput Agrobacterium tumefaciens-mediated germline transformation of mechanically isolated meristem explants of cotton (Gossypium hirsutum L.). Plant Cell Rep. 2014;33(1):153–64. https://doi.org/10.1007/s00299-013-1519-x.
Article
CAS
PubMed
Google Scholar
Chen X, Lu X, Shu N, et al. Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Sci Rep. 2017;7:44304. https://doi.org/10.1038/srep44304.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen H, Feng H, Zhang X, et al. An Arabidopsis E3 ligase HUB 2 increases histone H2B monoubiquitination and enhances drought tolerance in transgenic cotton. Plant Biotechnol J. 2019;17(3):556–68. https://doi.org/10.1111/pbi.12998.
Article
CAS
PubMed
Google Scholar
Cho MJ, Wu E, Kwan J, et al. Agrobacterium-mediated high-frequency transformation of an elite commercial maize (Zea mays L.) inbred line. Plant Cell Rep. 2014;33(10):1767–77. https://doi.org/10.1007/s00299-014-1656-x.
Article
CAS
PubMed
Google Scholar
Cox KL Jr, Babilonia K, Wheeler T, et al. Return of old foes—recurrence of bacterial blight and Fusarium wilt of cotton. Curr Opin Plant Biol. 2019;50:95–103. https://doi.org/10.1016/j.pbi.2019.03.012.
Article
CAS
PubMed
Google Scholar
de Oliveira RS, Oliveira-Neto OB, Moura HF, et al. Transgenic cotton plants expressing Cry1Ia12 toxin confer resistance to fall armyworm (Spodoptera frugiperda) and cotton boll weevil (Anthonomus grandis). Front Plant Sci. 2016;7:165. https://doi.org/10.3389/fpls.2016.00165.
Article
PubMed
PubMed Central
Google Scholar
Deng F, Tu L, Tan J, et al. GbPDF1 is involved in cotton fiber initiation via the core cis-element HDZIP2ATATHB2. Plant Physiol. 2012;158(2):890–904. https://doi.org/10.1104/pp.111.186742.
Article
CAS
PubMed
Google Scholar
Dhillon MK, Sharma HC. Influence of seed treatment and abiotic factors on damage to Bt and non-Bt cotton genotypes by the serpentine leaf miner Liriomyza trifolii (Diptera: Agromyzidae). Int J Trop Insect Sci. 2010;30(3):127–31. https://doi.org/10.1017/S1742758410000275.
Article
Google Scholar
Dhillon MK, Gujar GT, Kalia V. Impact of Bt cotton on insect biodiversity in cotton ecosystem in India. Pak Entomol. 2011;33(2):161–5.
Google Scholar
Dlugosz EM, Lenaghan SC, Stewart CN Jr. A robotic platform for high-throughput protoplast isolation and transformation. J Vis Exp. 2016; 115:e54300. https://doi.org/10.3791/54300.
Article
Google Scholar
Feng Z, Zhang B, Ding W, et al. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 2013;23(10):1229–32. https://doi.org/10.1038/cr.2013.114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao W, Long L, Tian X, et al. Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci. 2017;8:1364. https://doi.org/10.3389/fpls.2017.01364.
Article
PubMed
PubMed Central
Google Scholar
Gunapati S, Naresh R, Ranjan S, et al. Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis. Sci Rep. 2016;6:24978. https://doi.org/10.1038/srep24978.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo WF, Wang KY, Nan W, et al. Rapid and convenient transformation of cotton (Gossypium hirsutum L.) using in planta shoot apex via glyphosate selection. J Integr Agri. 2018;17(10):2196–203. https://doi.org/10.1016/S2095-3119(17)61865-3.
Article
CAS
Google Scholar
Gurusaravanan P, Vinoth S, Jayabalan N. An improved Agrobacterium-mediated transformation method for cotton (Gossypium hirsutum L.‘KC3’) assisted by microinjection and sonication. In Vitro Cell Dev Biol-Plant. 2020;56(1):111–21. https://doi.org/10.1007/s11627-019-10030-6.
Article
CAS
Google Scholar
Hagenbucher S, Eisenring M, Meissle M, et al. Constitutive and induced insect resistance in RNAi-mediated ultra-low gossypol cottonseed cotton. BMC Plant Biol. 2019;19(1):322. https://doi.org/10.1186/s12870-019-1921-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
James C. Global status of commercialized biotech/GM crops, vol. 44. Ithaca, NY: ISAAA; 2011.
Google Scholar
Janga MR, Campbell LM, Rathore KS. CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.). Plant Mol Biol. 2017;94(4–5):349–60. https://doi.org/10.1007/s11103-017-0599-3.
Article
CAS
PubMed
Google Scholar
Juturu VN, Mekala GK, Kirti PB. Current status of tissue culture and genetic transformation research in cotton (Gossypium spp.). Plant Cell Tissue Organ Cult. 2015;120(3):813–39.
Article
CAS
Google Scholar
Kalbande BB, Patil AS. Plant tissue culture independent Agrobacterium tumefaciens mediated in-planta transformation strategy for upland cotton (Gossypium hirsutum). J Genet Eng Biotechnol. 2016;14(1):9–18. https://doi.org/10.1016/j.jgeb.2016.05.003.
Article
PubMed
PubMed Central
Google Scholar
Karthik K, Nandiganti M, Thangaraj A, et al. Transgenic cotton (Gossypium hirsutum L.) to combat weed vagaries: utility of an apical meristem-targeted in planta transformation strategy to introgress a modified CP4-EPSPS gene for glyphosate tolerance. Front Plant Sci. 2020a;11:678. https://doi.org/10.3389/fpls.2020.00768.
Article
Google Scholar
Kesiraju K, Mishra P, Bajpai A, et al. Agrobacterium tumefaciens-mediated in planta transformation strategy for development of transgenics in cotton (Gossypium hirsutum L.) with GFP as a visual marker. Physiol Mol Biol Plants. 2020;26(11):2319–27. https://doi.org/10.1007/s12298-020-00887-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khan GA, Bakhsha A, Riazuddin S, Husnain T. Introduction of cry1Ab gene into cotton (Gossypium hirsutum) enhances resistance against Lepidopteran pest (Helicoverpa armigera). Span J Agric Res. 2011;1:296–302.
Article
Google Scholar
Kharbikar LL, Dongre AB, Dangat S. Particle bombardment: not a good approach for gene transfer into embryonic axes of cotton (Gossypium hirsutum L.) cultivars. Webmed Central. 2013;4(8):WMC004305.
Google Scholar
Khatoon S, Kumar A, Sarin NB, Khan JA. RNAi-mediated resistance against cotton leaf curl disease in elite Indian cotton (Gossypium hirsutum) cultivar Narasimha. Virus Genes. 2016;52(4):530–7. https://doi.org/10.1007/s11262-016-1328-8.
Article
CAS
PubMed
Google Scholar
Komori T, Komari T. Current state and perspective of binary vectors and superbinary vectors. In: Touraev A, Stewart CN, Citovsky V, Tzfira T, editors. Plant transformation technologies. Oxford: Blackwell Publishing Ltd; 2011. p. 123–38.
Google Scholar
Kuppu S, Neelam M, Hu RB, et al. Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton. PLoS ONE. 2013;8(5):e64190. https://doi.org/10.1371/journal.pone.0064190.
Article
CAS
PubMed
PubMed Central
Google Scholar
Latif A, Rao AQ, Khan MAU, et al. Herbicide-resistant cotton (Gossypium hirsutum) plants: an alternative way of manual weed removal. BMC Res Notes. 2015;8(1):1–8. https://doi.org/10.1186/s13104-015-1397-0.
Article
CAS
Google Scholar
Lee MK, Zhang Y, Zhang M, et al. Construction of a plant-transformation-competent BIBAC library and genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.). BMC Genom. 2013;14(1):208. https://doi.org/10.1186/1471-2164-14-208.
Article
CAS
Google Scholar
Lei J, Li X, Wang D, et al. Agrobacterium-mediated transformation of cotton shoot apex with SNC1 gene and resistance to cotton Fusarium wilt in T1 generation. Cotton Genom Genet. 2012. https://doi.org/10.5376/cgg.2012.03.0001.
Article
Google Scholar
Li A, Xia T, Xu W, et al. An integrative analysis of four CESA isoforms specific for fiber cellulose production between Gossypium hirsutum and Gossypium barbadense. Planta. 2013;237(6):1585–97. https://doi.org/10.1007/s00425-013-1868-2.
Article
CAS
PubMed
Google Scholar
Li L, Zhu Y, Jin S, Zhang X. Pyramiding Bt genes for increasing resistance of cotton to two major lepidopteran pests: Spodoptera litura and Heliothis armigera. Acta Physiol Plant. 2014;36(10):2717–27. https://doi.org/10.1007/s11738-014-1642-5.
Article
CAS
Google Scholar
Li S, Cong Y, Liu Y, et al. Optimization of Agrobacterium-mediated transformation in soybean. Front Plant Sci. 2017a;8:246. https://doi.org/10.3389/fpls.2017.00246.
Article
PubMed
PubMed Central
Google Scholar
Li C, Unver T, Zhang B. A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in cotton (Gossypium hirsutum L.). Sci Rep. 2017b;7(1):1–10. https://doi.org/10.1038/srep43902.
Article
Google Scholar
Liu JF, Zhao CY, Ma J, et al. Agrobacterium-mediated transformation of cotton (Gossypium hirsutum L.) with a fungal phytase gene improves phosphorus acquisition. Euphytica. 2011a;181(1):31–40. https://doi.org/10.1007/s10681-011-0370-9.
Article
CAS
Google Scholar
Liu JF, Wang XF, Li QL, et al. Biolistic transformation of cotton (Gossypium hirsutum L.) with the phyA gene from Aspergillus ficuum. Plant Cell Tissue Organ Cult. 2011b;106(2):207–14. https://doi.org/10.1007/s11240-010-9908-0.
Article
CAS
Google Scholar
Liu Z, Zhu Z, Zhang T. Development of transgenic CryIA(c) + GNA cotton plants via pollen-tube pathway method confers resistance to Helicoverpa armigera and Aphis gossypii Glover. In: Zang B, editor. Transgenic cotton. Totowa, NY: Humana Press; 2019. p. 233–44. https://doi.org/10.1007/978-1-4939-8952-2_20.
Chapter
Google Scholar
Manghwar H, Lindsey K, Zhang X, Jin S. CRISPR/Cas system: recent advances and future prospects for genome editing. Trends Plant Sci. 2019;24(12):1102–25. https://doi.org/10.1016/j.tplants.2019.09.006.
Article
CAS
PubMed
Google Scholar
Mao Y, Zhang H, Xu N, et al. Application of the CRISPR–Cas system for efficient genome engineering in plants. Mol Plant. 2013;6(6):2008–11. https://doi.org/10.1093/mp/sst121.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maqbool A, Abbas W, Rao AQ, et al. Gossypium arboreum GHSP26 enhances drought tolerance in Gossypium hirsutum. Biotechnol Prog. 2010;26(1):21–5. https://doi.org/10.1002/btpr.306.
Article
CAS
PubMed
Google Scholar
Marangoni M, Girotto L, Nunes MP, et al. Search for a microsatellite marker linked with resistance gene to Xanthomonas axonopodis pv. malvacearum in Brazilian Cotton. Am J Plant Sci. 2013c;4(10):2039. https://doi.org/10.4236/ajps.2013.410255.
Article
CAS
Google Scholar
Maury S, Delaunay A, Mesnard F, et al. O-methyltransferase(s)-suppressed plants produce lower amounts of phenolic vir inducers and are less susceptible to Agrobacterium tumefaciens infection. Planta. 2010;232(4):975–86. https://doi.org/10.1007/s00425-010-1230-x.
Article
CAS
PubMed
Google Scholar
Mittal A, Jiang Y, Ritchie GL, et al. AtRAV1 and AtRAV2 overexpression in cotton increases fiber length differentially under drought stress and delays flowering. Plant Sci. 2015;241:78–95. https://doi.org/10.1016/j.plantsci.2015.09.013.
Article
CAS
PubMed
Google Scholar
Mogali SC, Khadi BM, Kategeri IS. High efficiency transformation protocol for two Indian cotton (Gossypium hirsutum) varieties via pollen tube pathway. Ind J Agric Sci. 2013;83(9):949–52.
CAS
Google Scholar
Naranjo SE. Impacts of Bt transgenic cotton on integrated pest management. J Agric Food Chem. 2011;59(11):5842–51. https://doi.org/10.1021/jf102939c.
Article
CAS
PubMed
Google Scholar
Ni M, Ma W, Wang X, et al. Next-generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance. Plant Biotechnol J. 2017;15(9):1204–13. https://doi.org/10.1111/pbi.12709.
Article
CAS
PubMed
PubMed Central
Google Scholar
Niazian M, Noori SS, Galuszka P, Mortazavian SMM. Tissue culture-based Agrobacterium-mediated and in planta transformation methods. Soil Water Res. 2017;53(4):133–43. https://doi.org/10.17221/177/2016-CJGPB.
Article
CAS
Google Scholar
Noman A, Bashir R, Aqeel M, et al. Success of transgenic cotton (Gossypium hirsutum L.): fiction or reality? Cogent Food Agric. 2016;2(1):1207844. https://doi.org/10.1080/23311932.2016.1207844.
Article
CAS
Google Scholar
Nonaka S, Ezura H. Plant-Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer. Front Plant Sci. 2014;5:681. https://doi.org/10.3389/fpls.2014.00681.
Article
PubMed
PubMed Central
Google Scholar
Nonaka S, Someya T, Kadota Y, et al. Super-Agrobacterium ver. 4: improving the transformation frequencies and genetic engineering possibilities for crop plants. Front Plant Sci. 2019;10:1204. https://doi.org/10.3389/fpls.2019.01204.
Article
PubMed
PubMed Central
Google Scholar
Palle SR, Campbell LM, Pandeya D, et al. RNAi-mediated ultra-low gossypol cottonseed trait: performance of transgenic lines under field conditions. Plant Biotechnol J. 2013;11(3):296–304. https://doi.org/10.1111/pbi.12013.
Article
CAS
PubMed
Google Scholar
Puspito AN, Rao AQ, Hafeez MN, et al. Transformation and evaluation of Cry1Ac+ Cry2A and GTGene in Gossypium hirsutum L. Front Plant Sci. 2015;6:943. https://doi.org/10.3389/fpls.2015.00943.
Article
PubMed
PubMed Central
Google Scholar
Qaim M. Benefits of genetically modified crops for the poor: household income, nutrition, and health. New Biotechnol. 2010;27(5):552–7. https://doi.org/10.1016/j.nbt.2010.07.009.
Article
CAS
Google Scholar
Qin L, Li J, Wang Q, et al. High-efficient and precise base editing of C• G to T• A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system. Plant Biotechnol J. 2020;18(1):45–56. https://doi.org/10.1111/pbi.13168.
Article
CAS
PubMed
Google Scholar
Que Q, Chilton MDM, de Fontes CM, et al. Trait stacking in transgenic crops: challenges and opportunities. GM Crops. 2010;1(4):220–9. https://doi.org/10.4161/gmcr.1.4.13439.
Article
PubMed
Google Scholar
Rajasekaran K. Biolistic transformation of cotton zygotic embryo meristem. In: Zhang B, editor. Transgenic cotton. Totowa, NY: Humana Press; 2019a. p. 35–45. https://doi.org/10.1007/978-1-4939-8952-2_3.
Chapter
Google Scholar
Rajasekaran K. Biolistic transformation of cotton embryogenic cell suspension cultures. In: Zhang B, editor. Transgenic cotton. Totowa, NY: Humana Press; 2019b. p. 55–66. https://doi.org/10.1007/978-1-4939-8952-2_5.
Chapter
Google Scholar
Rao AQ, Irfan M, Saleem Z, et al. Overexpression of the phytochrome B gene from Arabidopsis thaliana increases plant growth and yield of cotton (Gossypium hirsutum). J Zhejiang Univ Sci B. 2011;12(4):326–34. https://doi.org/10.1631/jzus.B1000168.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rao AQ, Ali MA, Khan MAU, et al. Science behind cotton transformation. In: Abdurakhmonov IY, editor. Cotton research. IntechOpen; 2016. p. 209–29.
Google Scholar
Rathore KS, Sundaram S, Sunilkumar G, et al. Ultra-low gossypol cottonseed: generational stability of the seed-specific, RNAi-mediated phenotype and resumption of terpenoid profile following seed germination. Plant Biotechnol J. 2012;10(2):174–83. https://doi.org/10.1111/j.1467-7652.2011.00652.x.
Article
CAS
PubMed
Google Scholar
Rathore KS, Pandeya D, Campbell LM, et al. Ultra-low gossypol cottonseed: selective gene silencing opens up a vast resource of plant-based protein to improve human nutrition. Crit Rev Plant Sci. 2020;39(1): 1-29. https://doi.org/10.1080/07352689.2020.1724433.
Article
CAS
Google Scholar
Rauf S, Shehzad M, Al-Khayri JM, et al. Cotton (Gossypium hirsutum L.) breeding strategies. In: Al-Khayri JM, Jain SM, Johnson DV, editors. Advances in plant breeding strategies. Industrial and food crops. Cham, Switzerland: Springer; 2019. p. 29–59. https://doi.org/10.1007/978-3-030-23265-8_2.
Chapter
Google Scholar
Raymond Park J, McFarlane I, Hartley PR, Ceddia G. The role of transgenic crops in sustainable development. Plant Biotechnol J. 2011;9(1):2–21. https://doi.org/10.1111/j.1467-7652.2010.00565.x.
Article
PubMed
Google Scholar
Renny-Byfield S, Page JT, Udall JA, et al. Independent domestication of two Old World cotton species. Genome Biol Evol. 2016;8(6):1940–7. https://doi.org/10.1093/gbe/evw129.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rostamkhani N, Haghnazari A, Tohidfar M, Moradi A. Rapid identification of transgenic cotton (Gossypium hirsutum L.) plants by loop-mediated isothermal amplification. Cz J Genet Plant Breed. 2011;47(4):140–8. https://doi.org/10.17221/7/2011-CJGPB.
Article
CAS
Google Scholar
Shamim Z, Rashid B, Rahman S, Husnain T. Expression of drought tolerance in transgenic cotton. Sci Asia. 2013;39:1–11. https://doi.org/10.2306/scienceasia1513-1874.2013.39.001.
Article
CAS
Google Scholar
Shi H, Liu Z, Zhu L, et al. Overexpression of cotton (Gossypium hirsutum) dirigent1 gene enhances lignification that blocks the spread of Verticillium dahliae. Acta Biochim Biophys Sin. 2012;44(7):555–64. https://doi.org/10.1093/abbs/gms035.
Article
CAS
PubMed
Google Scholar
Shinde BA, Gurve SS, Gonde AD, Hole UB. Studies on resistance of cotton genotypes against jassids (Amrasca biguttula). BIOINFOLET-A Quart J Life Sci. 2014;11(3a):758–62.
Google Scholar
Simon DP, Narayanan A, Gouda KM, Sarada R. Vir gene inducers in Dunaliella salina; an insight in to the Agrobacterium-mediated genetic transformation of microalgae. Algal Res. 2015;11:121–4. https://doi.org/10.1016/j.algal.2015.06.007.
Article
Google Scholar
Singh RJ. Sustainable intensification of transgenic cotton in India-A review. Indian J Agric Sci. 2017;87:1267–76.
CAS
Google Scholar
Singh RJ, Ahlawat IPS. Productivity, competition indices and soil fertility changes of Bt cotton (Gossypium hirsutum)–groundnut (Arachis hypogaea) intercropping system using different fertility levels. Indian J Agric Sci. 2011;81(7):606–11.
CAS
Google Scholar
Singh AK, Paritosh K, Kant U, et al. High expression of Cry1Ac protein in cotton (Gossypium hirsutum) by combining independent transgenic events that target the protein to cytoplasm and plastids. PLoS ONE. 2016;11(7): e0158603. https://doi.org/10.1371/journal.pone.0158603.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sohrab SS, Kamal MA, Ilah A, et al. Development of cotton leaf curl virus resistant transgenic cotton using antisense ßC1 gene. Saudi J Biol Sci. 2016;23(3):358–62. https://doi.org/10.1016/j.sjbs.2014.11.013.
Article
CAS
PubMed
Google Scholar
Someya T, Nonaka S, Nakamura K, Ezura H. Increased 1-aminocyclopropane-1-carboxylate deaminase activity enhances Agrobacterium tumefaciens-mediated gene delivery into plant cells. Microbiol Open. 2013;2(5):873–80. https://doi.org/10.1002/mbo3.123.
Article
CAS
Google Scholar
Su Y, Liang W, Liu Z, et al. Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum. J Plant Physiol. 2017;218:222–34. https://doi.org/10.1016/j.jplph.2017.07.017.
Article
CAS
PubMed
Google Scholar
Sun X, Gong SY, Nie XY, et al. A R2R3-MYB transcription factor that is specifically expressed in cotton (Gossypium hirsutum) fibers affects secondary cell wall biosynthesis and deposition in transgenic Arabidopsis. Physiol Plant. 2015;154(3):420–32. https://doi.org/10.1111/ppl.12317.
Article
CAS
PubMed
Google Scholar
Sun L, Alariqi M, Zhu Y, et al. Red fluorescent protein (DsRed2), an ideal reporter for cotton genetic transformation and molecular breeding. The Crop J. 2018;6(4):366–76. https://doi.org/10.1016/j.cj.2018.05.002.
Article
Google Scholar
Tabashnik BE, Carrière Y. Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol. 2017;35(10):926–35. https://doi.org/10.1038/nbt.3974.
Article
CAS
PubMed
Google Scholar
Tian J, Zhang X, Liang B, et al. Expression of baculovirus anti-apoptotic genes p35 and op-iap in cotton (Gossypium hirsutum L.) enhances tolerance to Verticillium wilt. PLoS ONE. 2010;5(12):e14218. https://doi.org/10.1371/journal.pone.0014218.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian G, Cheng L, Qi X, et al. Transgenic cotton plants expressing double-stranded RNAs target HMG-CoA reductase (HMGR) gene inhibits the growth, development and survival of cotton bollworms. Int J Biol Sci. 2015;11(11):1296. https://doi.org/10.7150/ijbs.12463.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapero C, Wilson IW, Stiller WN, Wilson LJ. Enhancing integrated pest management in GM cotton systems using host plant resistance. Front Plant Sci. 2016;7:500. https://doi.org/10.3389/fpls.2016.00500.
Article
PubMed
PubMed Central
Google Scholar
Vaghchhipawala Z, Radke S, Nagy E, et al. RepB C-terminus mutation of a pRi-repABC binary vector affects plasmid copy number in Agrobacterium and transgene copy number in plants. PLoS ONE. 2018;13(11): e0200972. https://doi.org/10.1371/journal.pone.0200972.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walford SA, Wu Y, Llewellyn DJ, Dennis ES. Epidermal cell differentiation in cotton mediated by the homeodomain leucine zipper gene, GhHD-1. Plant J. 2012;71(3):464–78. https://doi.org/10.1111/j.1365-313X.2012.05003.x.
Article
CAS
PubMed
Google Scholar
Wamiq G, Khan JA. Overexpression of ghr-miR166b generates resistance against Bemisia tabaci infestation in Gossypium hirsutum plants. Planta. 2018;247(5):1175–89. https://doi.org/10.1007/s00425-018-2852-7.
Article
CAS
PubMed
Google Scholar
Wan Q, Guan X, Yang N, et al. Small interfering RNA s from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development. New Phytol. 2016;210(4):1298–310. https://doi.org/10.1111/nph.13860.
Article
CAS
PubMed
Google Scholar
Wang M, Zhang B, Wang Q. Cotton transformation via pollen tube pathway. In: Zang B, editor. Transgenic cotton. Totowa, NY: Humana Press; 2013. p. 71–7. https://doi.org/10.1007/978-1-62703-212-4_6.
Chapter
Google Scholar
Wang Y, Meng Z, Liang C, et al. Increased lateral root formation by CRISPR/Cas9-mediated editing of arginase genes in cotton. Sci China Life Sci. 2017;60(5):524. https://doi.org/10.1007/s11427-017-9031-y.
Article
CAS
PubMed
Google Scholar
Wang Q, Alariqi M, Wang F, et al. The application of a heat-inducible CRISPR/Cas12b (C2c1) genome editing system in tetraploid cotton (G. hirsutum) plants. Plant Biotechnol J. 2020;18(12):2436–43. https://doi.org/10.1111/pbi.13417.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilson L, Downes S, Khan M, et al. IPM in the transgenic era: a review of the challenges from emerging pests in Australian cotton systems. Crop Pasture Sci. 2013;64(8):737–49. https://doi.org/10.1071/CP13070.
Article
Google Scholar
Wu E, Lenderts B, Glassman K, et al. Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants. In Vitro Cell Dev Biol Plant. 2014;50(1):9–18. https://doi.org/10.1007/s11627-013-9583-z.
Article
CAS
PubMed
Google Scholar
Wu H, Tian Y, Wan Q, et al. Genetics and evolution of MIXTA genes regulating cotton lint fiber development. New Phytol. 2018;217(2):883–95. https://doi.org/10.1111/nph.14844.
Article
CAS
PubMed
Google Scholar
Yeaman GR, Paul S, Nahirna I, et al. Development and validation of a fluorescent multiplexed immunoassay for measurement of transgenic proteins in cotton (Gossypium hirsutum). J Agric Food Chem. 2016;64(24):5117–27. https://doi.org/10.1021/acs.jafc.6b01441.
Article
CAS
PubMed
Google Scholar
Yu LH, Wu SJ, Peng YS, et al. Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnol J. 2016;1(14):72–84. https://doi.org/10.1111/pbi.12358.
Article
CAS
Google Scholar
Yu Y, Yu PC, Chang WJ, et al. Plastid transformation: how does it work? Can it be applied to crops? What can it offer? Intl J Mol Sci. 2020;21(14):4854. https://doi.org/10.3390/ijms21144854.
Article
CAS
Google Scholar
Yue Y, Zhang M, Zhang J, et al. Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. J Exp Bot. 2012;63(10):3741–8. https://doi.org/10.1093/jxb/ers069.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang DY, Yang HL, Li XS, et al. Overexpression of Tamarix albiflonumTaMnSOD increases drought tolerance in transgenic cotton. Mol Breed. 2014;34(1):1–11. https://doi.org/10.1007/s11032-014-0015-5.
Article
CAS
Google Scholar
Zhang J, Khan SA, Heckel DG, Bock R. Next-generation insect-resistant plants: RNAi-mediated crop protection. Trends Biotechnol. 2017;35(9):871–82. https://doi.org/10.1016/j.tibtech.2017.04.009.
Article
CAS
PubMed
Google Scholar
Zhao Z, Chen Y, Xu W, Ma M. Surface plasmon resonance detection of transgenic Cry1Ac cotton (Gossypium spp.). J Agric Food Chem. 2013d;61(12):2964–9. https://doi.org/10.1021/jf3050439.
Article
CAS
PubMed
Google Scholar
Zhao QC, Liu MH, Zhang XW, et al. Generation of glyphosate-tolerant transgenic tobacco and cotton by transfor-mation with a 5-enolpyruvyl-shikimate-3-phosphate synthase EPSPS gene. J Zhejiang Univ-Sci B. 2015;16(10):824–31. https://doi.org/10.1631/jzus.B1500056.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao X, Meng Z, Wang Y, et al. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat Plants. 2017;3(12):956–64. https://doi.org/10.1038/s41477-017-0063-z.
Article
CAS
PubMed
Google Scholar
Zhi L, TeRonde S, Meyer S, et al. Effect of Agrobacterium strain and plasmid copy number on transformation frequency, event quality and usable event quality in an elite maize cultivar. Plant Cell Rep. 2015;34(5):745–54. https://doi.org/10.1007/s00299-014-1734-0.
Article
CAS
PubMed
Google Scholar
Zhu X, Sun L, Kuppu S, et al. The yield difference between wild-type cotton and transgenic cotton that expresses IPT depends on when water-deficit stress is applied. Sci Rep. 2018;8(1):1–11. https://doi.org/10.1038/s41598-018-20944-7.
Article
CAS
Google Scholar