Agarwal G, Rajavel M, Gopal B, et al. Structure-based phylogeny as a diagnostic for functional characterization of proteins with a cupin fold. PLoS ONE. 2009;4(5):e5736. https://doi.org/10.1371/journal.pone.0005736.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alvarez ME, Pennell RI, Meijer P-J, et al. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell. 1998;92(6):773–84. https://doi.org/10.1016/S0092-8674(00)81405-1.
Article
CAS
PubMed
Google Scholar
Apse MP, Blumwald E. Na+ transport in plants. FEBS Lett. 2007;581(12):2247–54. https://doi.org/10.1016/j.febslet.2007.04.014.
Article
CAS
PubMed
Google Scholar
Apse MP, Aharon GS, Snedden WA, et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science. 1999;285(5431):1256–8. https://doi.org/10.1126/science.285.5431.1256.
Article
CAS
PubMed
Google Scholar
Aranda-Sicilia MN, Cagnac O, Chanroj S, et al. Arabidopsis KEA2, a homolog of bacterial KefC, encodes a K+/H+ antiporter with a chloroplast transit peptide. Biochim Biophys Acta (BBA) Biomembr. 2012;1818(9):2362–71. https://doi.org/10.1016/j.bbamem.2012.04.011.
Article
CAS
Google Scholar
Assaha DV, Ueda A, Saneoka H, et al. The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol. 2017;8:509. https://doi.org/10.3389/fphys.2017.00509.
Article
PubMed
PubMed Central
Google Scholar
Bao AK, Du BQ, Touil L, et al. Co-expression of tonoplast Cation/H+ antiporter and H+-pyrophosphatase from xerophyte Zygophyllum xanthoxylum improves alfalfa plant growth under salinity, drought and field conditions. Plant Biotechnol J. 2016;14(3):964–75. https://doi.org/10.1111/pbi.12451.
Article
CAS
PubMed
Google Scholar
Bernstein L, Hayward H. Physiology of salt tolerance. Annu Rev Plant Physiol. 1958;9(1):25–46. https://doi.org/10.1146/annurev.pp.09.060158.000325.
Article
CAS
Google Scholar
Blumwald E. Sodium transport and salt tolerance in plants. Curr Opin Cell Biol. 2000;12(4):431–4. https://doi.org/10.1016/S0955-0674(00)00112-5.
Article
CAS
PubMed
Google Scholar
Cheng C, Zhang Y, Chen X, et al. Co-expression of AtNHX1 and TsVP improves the salt tolerance of transgenic cotton and increases seed cotton yield in a saline field. Mol Breed. 2018;38(2):19. https://doi.org/10.1007/s11032-018-0774-5.
Article
CAS
Google Scholar
Choudhury FK, Rivero RM, Blumwald E, et al. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017;90(5):856–67. https://doi.org/10.1111/tpj.13299.
Article
CAS
PubMed
Google Scholar
Cui J, Hua Y, Zhou T, et al. Global landscapes of the Na+/H+ antiporter (NHX) family members uncover their potential roles in regulating the rapeseed resistance to salt stress. Int J Mol Sci. 2020;21(10):3429. https://doi.org/10.3390/ijms21103429.
Article
CAS
PubMed Central
Google Scholar
Darko E, Khalil R, Dobi Z, et al. Addition of Aegilops biuncialis chromosomes 2M or 3M improves the salt tolerance of wheat in different way. Sci Rep. 2020;10(1):1–13. https://doi.org/10.1038/s41598-020-79372-1.
Article
CAS
Google Scholar
Dong H. Combating salinity stress effects on cotton with agronomic practices. Afr J Agric Res. 2012;7(34):4708–15. https://doi.org/10.5897/AJAR12.501.
Article
Google Scholar
Du J, Huang YP, Xi J, et al. Functional gene-mining for salt-tolerance genes with the power of Arabidopsis. Plant J. 2008;56(4):653–64. https://doi.org/10.1111/j.1365-313X.2008.03602.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flowers TJ, Colmer TD. Salinity tolerance in halophytes. New Phytol. 2008;179(4):945–63. https://doi.org/10.1111/j.1469-8137.2008.02531.x.
Article
CAS
PubMed
Google Scholar
Guo Q, Tian XX, Mao PC, Meng L. Overexpression of Iris lactea tonoplast Na+/H+ antiporter gene IlNHX confers improved salt tolerance in tobacco. Biol Plant. 2020;64:50–7. https://doi.org/10.32615/bp.2019.126.
Article
CAS
Google Scholar
Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 2nd ed. 1950. p. 347. https://www.cabdirect.org/cabdirect/abstract/19500302257.
Hu Y, Xue YQ, Liu JS, et al. Hybrid lethality caused by two complementary dominant genes in cabbage (Brassica oleracea L.). Mol Breed. 2016;36(6):1–10. https://doi.org/10.1007/s11032-016-0498-3.
Article
CAS
Google Scholar
Khorsandi F, Anagholi A. Reproductive compensation of cotton after salt stress relief at different growth stages. J Agron Crop Sci. 2009;195(4):278–83. https://doi.org/10.1111/j.1439-037X.2009.00370.x.
Article
Google Scholar
Li XB, Cai L, Cheng NH, et al. Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber. Plant Physiol. 2002;130(2):666–74. https://doi.org/10.1104/pp.005538.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin IS, Wu YS, Chen CT, et al. AtRBOH I confers submergence tolerance and is involved in auxin-mediated signaling pathways under hypoxic stress. Plant Growth Regul. 2017;83(2):277–85. https://doi.org/10.1007/s10725-017-0292-1.
Article
CAS
Google Scholar
Lin YJ, Yu XZ, Li YH, et al. Inhibition of the mitochondrial respiratory components (Complex I and Complex III) as stimuli to induce oxidative damage in Oryza sativa L. under thiocyanate exposure. Chemosphere. 2020;243:125472. https://doi.org/10.1016/j.chemosphere.2019.125472.
Article
CAS
PubMed
Google Scholar
Longenecker D. The influence of high sodium in soils upon fruiting and shedding, boll characteristics, fiber properties, and yields of two cotton species. Soil Sci. 1974;118(6):387–96.
Article
CAS
Google Scholar
Luo X, Dai Y, Zheng C, et al. The ABI4-RbohD/VTC2 regulatory module promotes reactive oxygen species (ROS) accumulation to decrease seed germination under salinity stress. New Phytol. 2021;229(2):950–62. https://doi.org/10.1111/nph.16921.
Article
CAS
PubMed
Google Scholar
Lv S, Zhang K, Gao Q, et al. Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol. 2008;49(8):1150–64. https://doi.org/10.1093/pcp/pcn090.
Article
CAS
PubMed
Google Scholar
Ma X, Dong H, Li W. Genetic improvement of cotton tolerance to salinity stress. Afr J Agric Res. 2011;6(33):6797–803.
Google Scholar
Ma W, Ren Z, Zhou Y, et al. Genome-wide identification of the Gossypium hirsutum NHX genes reveals that the endosomal-type GhNHX4A is critical for the salt tolerance of cotton. Int J Mol Sci. 2020;21(20):7712. https://doi.org/10.3390/ijms21207712.
Article
CAS
PubMed Central
Google Scholar
Martinez G, Abdelraheem A, Darapuneni M, et al. Evaluation of a multi-parent advanced generation inter-cross (MAGIC) introgressed line population for Verticillium wilt resistance in Upland cotton. Euphytica. 2018;214(10):197. https://doi.org/10.1007/s10681-018-2278-0.
Article
CAS
Google Scholar
Martinoia E, Maeshima M, Neuhaus HE. Vacuolar transporters and their essential role in plant metabolism. J Exp Bot. 2007;58(1):83–102. https://doi.org/10.1093/jxb/erl183.
Article
CAS
PubMed
Google Scholar
Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–81. https://doi.org/10.1146/annurev.arplant.59.032607.092911.
Article
CAS
PubMed
Google Scholar
Pál M, Majláth I, Németh E, et al. The effects of putrescine are partly overlapping with osmotic stress processes in wheat. Plant Sci. 2018;268(3):67–76. https://doi.org/10.1016/j.plantsci.2017.12.011.
Article
CAS
PubMed
Google Scholar
Parida AK, Das A, Mittra B. Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees. 2004;18(2):167–74. https://doi.org/10.1007/s00468-003-0293-8.
Article
CAS
Google Scholar
Pasapula V, Shen G, Kuppu S, et al. Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J. 2011;9(1):88–99. https://doi.org/10.1111/j.1467-7652.2010.00535.x.
Article
CAS
PubMed
Google Scholar
Peng J, Liu J, Zhang L, et al. Effects of soil salinity on sucrose metabolism in cotton leaves. PLoS ONE. 2016;11(5):e0156241. https://doi.org/10.1371/journal.pone.0156241.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng Z, He S, Gong W, et al. Integration of proteomic and transcriptomic profiles reveals multiple levels of genetic regulation of salt tolerance in cotton. BMC Plant Biol. 2018;18(1):1–19. https://doi.org/10.1186/s12870-018-1350-1.
Article
CAS
Google Scholar
Pilot G, Gaymard F, Mouline K, et al. Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol. 2003;51(5):773–87. https://doi.org/10.1023/A:1022597102282.
Article
CAS
PubMed
Google Scholar
Sattar S, Hussnain T, Javaid A. Effect of NaCl salinity on cotton (Gossypium arboreum L.) grown on MS medium and in hydroponic cultures. J Anim Plant Sci. 2010;20:87–9.
Google Scholar
Stephan AB, Kunz HH, Yang E, et al. Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters. Proc Natl Acad Sci. 2016;113(35):E5242–9. https://doi.org/10.1073/pnas.1519555113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann Bot. 2003;91(5):503–27. https://doi.org/10.1093/aob/mcg058.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian Q, Shen L, Luan J, et al. Rice Shaker potassium channel OsAKT2 positively regulates salt tolerance and grain yield by mediating K+ redistribution. Plant Cell Environ. 2021;44:2951–65. https://doi.org/10.1111/pce.14101.
Article
CAS
PubMed
Google Scholar
Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 2003;218(1):1–14. https://doi.org/10.1007/s00425-003-1105-5.
Article
CAS
PubMed
Google Scholar
Yamaguchi T, Fukada-Tanaka S, Inagaki Y, et al. Genes encoding the vacuolar Na+/H+ exchanger and flower coloration. Plant Cell Physiol. 2001;42(5):451–61. https://doi.org/10.1093/pcp/pce080.
Article
CAS
PubMed
Google Scholar
Yarra R, Kirti P. Expressing class I wheat NHX (TaNHX2) gene in eggplant (Solanum melongena L.) improves plant performance under saline condition. Funct Integr Genomics. 2019;19(4):541–54. https://doi.org/10.1007/s10142-019-00656-5.
Article
CAS
PubMed
Google Scholar
Zhang F, Zhu G, Du L, et al. Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii. Sci Rep. 2016a;6(1):1–15. https://doi.org/10.1038/srep20582.
Article
CAS
Google Scholar
Zhang K, Song J, Chen X, et al. Expression of the Thellungiella halophila vacuolar H+-pyrophosphatase gene (TsVP) in cotton improves salinity tolerance and increases seed cotton yield in a saline field. Euphytica. 2016b;211(2):231–44. https://doi.org/10.1007/s10681-016-1733-z.
Article
CAS
Google Scholar
Zhang X, Yao Y, Li X, et al. Transcriptomic analysis identifies novel genes and pathways for salt stress responses in Suaeda salsa leaves. Sci Rep. 2020;10(1):1–12.
Article
Google Scholar
Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 2002;53(1):247–73. https://doi.org/10.1146/annurev.arplant.53.091401.143329.
Article
CAS
PubMed
PubMed Central
Google Scholar