Alfatih A, Wu J, Zhang ZS, et al. Rice NIN-LIKE PROTEIN 1 rapidly responds to nitrogen deficiency and improves yield and nitrogen use efficiency. J Exp Bot. 2020;71(19):6032–42. https://doi.org/10.1093/jxb/eraa292.
Article
CAS
PubMed
Google Scholar
Basra AS, Malik CP. Development of the cotton fiber. Int Rev Cytol. 1984;89:65–113. https://doi.org/10.1016/S0074-7696(08)61300-5.
Article
CAS
Google Scholar
Borisov AY, Madsen LH, Tsyganov VE, et al. The Sym35 gene required for root nodule development in pea is an ortholog of Nin from Lotus japonicus. Plant Physiol. 2003;131(3):1009–17. https://doi.org/10.1104/pp.102.016071.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cai H, Zhou Y, Xiao J, et al. Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep. 2009;28(3):527–37. https://doi.org/10.1007/s00299-008-0665-z.
Article
CAS
PubMed
Google Scholar
Cai T, Chen Y, Pan J, et al. Improved crop management achieved high wheat yield and nitrogen use efficiency. Int J Plant Prod. 2021;15(2):317–24. https://doi.org/10.1007/s42106-021-00139-3.
Article
Google Scholar
Castaings L, Camargo A, Pocholle D, et al. The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. Plant J. 2009;57(3):426–35. https://doi.org/10.1111/j.1365-313X.2008.03695.x.
Article
CAS
PubMed
Google Scholar
Cataldo DA, Maroon M, Schrader LE, et al. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plan. 1975;6(1):71–80. https://doi.org/10.1080/00103627509366547.
Article
CAS
Google Scholar
Chardon F, Noël V, Masclaux DC. Exploring NUE in crops and in Arabidopsis ideotypes to improve yield and seed quality. J Exp Bot. 2012;63(9):3401–12. https://doi.org/10.1093/jxb/err353.
Article
CAS
PubMed
Google Scholar
Chiasson DM, Loughlin PC, Mazurkiewicz D, et al. Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH
+4
transport. Proc Natl Acad Sci. 2014;111(13):4814-19. https://doi.org/10.1073/pnas.1312801111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choe HT, Thimann KV. The metabolism of oat leaves during senescence: III. The senescence of isolated chloroplasts. Plant Physiol. 1975;55(5):828–34. https://doi.org/10.1104/pp.55.5.828.
Article
CAS
PubMed
PubMed Central
Google Scholar
Devkota M, Martius C, Lamers JPA, et al. Tillage and nitrogen fertilization effects on yield and nitrogen use efficiency of irrigated cotton. Soil till Res. 2013;134:72–82. https://doi.org/10.1016/j.still.2013.07.009.
Article
Google Scholar
Ding Y, Tang S, Han R, et al. Iron oxides nanobelt arrays rooted in nanoporous surface of carbon tube textile as stretchable and robust electrodes for flexible supercapacitors with ultrahigh areal energy density and remarkable cycling-stability. Sci Rep. 2020;10(1):11023. https://doi.org/10.1038/s41598-020-68032-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong H, Li W, Eneji AE, et al. Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field. Field Crops Res. 2012;126:137–44. https://doi.org/10.1016/j.fcr.2011.10.005.
Article
Google Scholar
Du X, Chen B, Zhang Y, et al. Nitrogen use efficiency of cotton (Gossypium hirsutum L.) as influenced by wheat–cotton cropping systems. Eur J Agron. 2016;75:72–9. https://doi.org/10.1016/j.eja.2016.01.001.
Article
CAS
Google Scholar
Durak E, Karaosmanoglu F. Using of cotton seed oil as an environmentally accepted lubricant additive. Energy Sour. 2004;26(7):611–25. https://doi.org/10.1080/00908310490438605.
Article
CAS
Google Scholar
Egbuta MA, McIntosh S, Waters DLE, et al. Biological importance of cotton by-products relative to chemical constituents of the cotton plant. Molecules. 2017;22(1):93. https://doi.org/10.3390/molecules22010093.
Article
CAS
PubMed Central
Google Scholar
Ehara H, Tsuchiya M, Ogo T. Fundamental growth response to fertilizer in rice plants: I. Varietal difference in the growth rate at the seedling stage. Jpn J Crop Sci. 1990;59(3):426–34. https://doi.org/10.1626/jcs.59.426.
Article
Google Scholar
Fan X, Naz M, Fan X, et al. Plant nitrate transporters: from gene function to application. J Exp Bot. 2017;68(10):2463–75. https://doi.org/10.1093/jxb/erx011.
Article
CAS
PubMed
Google Scholar
Ferrario-Mery S, Valadier MH, Foyer CH. Overexpression of nitrate reductase in tobacco delays drought-induced decreases in nitrate reductase activity and mRNA. Plant Physiol. 1998;117(1):293–302. https://doi.org/10.1104/pp.117.1.293.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ge M, Liu Y, Jiang L, et al. Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response. Plant Growth Regul. 2018;84(1):95–105. https://doi.org/10.1007/s10725-017-0324-x.
Article
CAS
Google Scholar
Good AG, Shrawat AK, Muench DG. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci. 2004;9(12):597–605. https://doi.org/10.1016/j.tplants.2004.10.008.
Article
CAS
PubMed
Google Scholar
Hawkesford MJ. Reducing the reliance on nitrogen fertilizer for wheat production. J Cereal Sci. 2014;59(3):276–83. https://doi.org/10.1016/j.jcs.2013.12.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hou Z, Li P, Li B, et al. Effects of fertigation scheme on N uptake and N use efficiency in cotton. Plant Soil. 2007;290(1):115–26. https://doi.org/10.1007/s11104-006-9140-1.
Article
CAS
Google Scholar
Iqbal A, Dong Q, Wang X, et al. Variations in nitrogen metabolism are closely linked with nitrogen uptake and utilization efficiency in cotton genotypes under various nitrogen supplies. Plants. 2020;9(2):250. https://doi.org/10.3390/plants9020250.
Article
CAS
PubMed Central
Google Scholar
Kant S, Seneweera S, Rodin J, et al. Improving yield potential in crops under elevated CO2: integrating the photosynthetic and
nitrogen utilization efficiencies. Front Plant Sci. 2012;3:162. https://doi.org/10.3389/fpls.2012.00162.
Karlen DL, Hunt PG, Matheny TA. Fertilizer 15nitrogen recovery by corn, wheat, and cotton grown with and without pre-plant tillage on norfolk loamy sand. Crop Sci. 1996;36(4):975–81. https://doi.org/10.2135/cropsci1996.0011183X003600040026x.
Article
Google Scholar
Konishi M, Yanagisawa S. Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nat Commun. 2013;4(1):1617. https://doi.org/10.1038/ncomms2621.
Article
CAS
PubMed
Google Scholar
Konishi M, Yanagisawa S. The role of protein-protein interactions mediated by the PB1 domain of NLP transcription factors in nitrate-inducible gene expression. BMC Plant Biol. 2019;19(1):90. https://doi.org/10.1186/s12870-019-1692-3.
Article
PubMed
PubMed Central
Google Scholar
Krapp A, David LC, Chardin C, et al. Nitrate transport and signalling in Arabidopsis. J Exp Bot. 2014;65(3):789–98. https://doi.org/10.1093/jxb/eru001.
Article
CAS
PubMed
Google Scholar
Lei ZY, Zhao P, Cao MJ, et al. High-throughput binary vectors for plant gene function analysis. J Integr Plant Biol. 2007;49(4):556–67. https://doi.org/10.1111/j.1744-7909.2007.00442.x.
Article
CAS
Google Scholar
Li P, Dong H, Zheng C, et al. Optimizing nitrogen application rate and plant density for improving cotton yield and nitrogen use efficiency in the North China Plain. PLoS ONE. 2017;12(10): e0185550. https://doi.org/10.1371/journal.pone.0185550.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin SH, Kuo HF, Canivenc G, et al. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell. 2008;20(9):2514–28. https://doi.org/10.1105/tpc.108.060244.
Article
CAS
PubMed
PubMed Central
Google Scholar
Magwanga RO, Kirungu JN, Lu P, et al. Map-based functional analysis of the GhNLP genes reveals their roles in enhancing tolerance to N-deficiency in cotton. Int J Mol Sci. 2019;20(19):4953. https://doi.org/10.3390/ijms20194953.
Article
CAS
PubMed Central
Google Scholar
Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, et al. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot. 2010;105(7):1141–57. https://doi.org/10.1093/aob/mcq028.
Article
PubMed
PubMed Central
Google Scholar
McConnell JS, Mozaffari M. Yield, petiole nitrate, and node development responses of cotton to early season nitrogen fertilization. J Plant Nutr. 2005;27(7):1183–97. https://doi.org/10.1081/PLN-120038543.
Article
CAS
Google Scholar
Mng’omba SA, Akinnifesi FK, Kerr A, et al. Growth and yield responses of cotton (Gossypium hirsutum) to inorganic and organic fertilizers in southern Malawi. Agroforest Syst. 2017;91(2):249–58. https://doi.org/10.1007/s10457-016-9924-0.
Article
Google Scholar
Niu J, Gui H, Iqbal A, et al. N-use efficiency and yield of cotton (G. hirsutumn L.) are improved through the combination of N-fertilizer reduction and N-efficient cultivar. Agronomy. 2021;11(1):55. https://doi.org/10.3390/agronomy11010055.
Article
CAS
Google Scholar
OECD/FAO. OECD-FAO agricultural outlook 2020–2029. Paris: OECD Publishing; 2020. p. 212–6. https://doi.org/10.1787/1112c23b-en.
Book
Google Scholar
Raun WR, Johnson GV. Improving nitrogen use efficiency for cereal production. Agron J. 1999;91(3):357–63. https://doi.org/10.2134/agronj1999.00021962009100030001x.
Article
Google Scholar
Rogers GM, Poore MH, Paschal JC. Feeding cotton products to cattle. Vet Clin N Am Food A. 2002;18(2):267–94. https://doi.org/10.1016/S0749-0720(02)00020-8.
Article
Google Scholar
Sandhu N, Sethi M, Kumar A, et al. Biochemical and genetic approaches improving nitrogen use efficiency in cereal crops: a review. Front Plant Sci. 2021;12(757): 657629. https://doi.org/10.3389/fpls.2021.657629.
Article
PubMed
PubMed Central
Google Scholar
Schauser L, Roussis A, Stiller J, et al. A plant regulator controlling development of symbiotic root nodules. Nature. 1999;402(6758):191–5. https://doi.org/10.1038/46058.
Article
CAS
PubMed
Google Scholar
Shah JM, Bukhari SAH, Zeng JB, et al. Nitrogen (N) metabolism related enzyme activities, cell ultrastructure and nutrient contents as affected by N level and barley genotype. J Integr Agric. 2017;16(1):190–8. https://doi.org/10.1016/S2095-3119(15)61308-9.
Article
CAS
Google Scholar
Tiong J, Sharma N, Sampath R, et al. Improving nitrogen use efficiency through overexpression of alanine aminotransferase in rice, wheat, and barley. Front Plant Sci. 2021;12(29): 628521. https://doi.org/10.3389/fpls.2021.628521.
Article
PubMed
PubMed Central
Google Scholar
Uauy C, Distelfeld A, Fahima T, et al. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science. 2006;314(5803):1298. https://doi.org/10.1126/science.1133649.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Peng F, Li M, et al. Expression of a heterologous SnRK1 in tomato increases carbon assimilation, nitrogen uptake and modifies fruit development. J Plant Physiol. 2012;169(12):1173–82. https://doi.org/10.1016/j.jplph.2012.04.013.
Article
CAS
PubMed
Google Scholar
Wu J, Zhang ZS, Xia JQ, et al. Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency. Plant Biotechnol J. 2020;19(3):448–61. https://doi.org/10.1111/pbi.13475.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xue XP, Sha YX, Guo WQ, et al. Accumulation characteristics of biomass and nitrogen and critical nitrogen concentration dilution model of cotton reproductive organ. Acta Ecol Sin. 2008;28(12):6204–11. https://doi.org/10.1016/S1872-2032(09)60015-9.
Yu LY, Wu J, Tang H, et al. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation. Sci Rep. 2016;6:27795. https://doi.org/10.1038/srep27795.
Zafar MM, Razzaq A, Farooq MA, et al. Insect resistance management in Bacillus thuringiensis cotton by MGPS (multiple genes pyramiding and silencing). J Cotton Res. 2020;3(1):33. https://doi.org/10.1186/s42397-020-00074-0.
Article
CAS
Google Scholar
Zhang HH, Fu XQ, Wang XR, et al. Identification and screening of nitrogen-efficient cotton genotypes under low and normal nitrogen environments at the seedling stage. J Cotton Res. 2018;1:6. https://doi.org/10.1186/s42397-018-0006-x.
Article
Google Scholar