Abdelraheem A, Esmaeili N, O’Connell M, Zhang J. Progress and perspective on drought and salt stress tolerance in cotton. Ind Crops Prod. 2019;130:118–29. https://doi.org/10.1016/j.indcrop.2018.12.070.
Article
CAS
Google Scholar
Amtmann A. Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Mol Plant. 2009;2(1):3–12. https://doi.org/10.1093/mp/ssn094.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. J Exp Bot. 2014;65(5):1229–40. https://doi.org/10.1093/jxb/ert375.
Article
CAS
PubMed
Google Scholar
Blakely LM, Blakely RM, Colowit PM, Elliott DS. Experimental studies on lateral root formation in radish seedling roots: II. Analysis of the dose-response to exogenous auxin. Plant Physiol. 1988;87(2):414–9. https://doi.org/10.1104/pp.87.2.414.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bulle M, Yarra R, Abbagani S. Enhanced salinity stress tolerance in transgenic chilli pepper (Capsicum annuum L.) plants overexpressing the wheat antiporter (TaNHX2) gene. Mol Breed. 2016;36(4):36. https://doi.org/10.1007/s11032-016-0451-5.
Article
CAS
Google Scholar
Cao D, Hou W, Liu W, et al. Overexpression of TaNHX2 enhances salt tolerance of ‘composite’ and whole transgenic soybean plants. Plant Cell Tissue Organ Cult (PCTOC). 2011;107(3):541–52. https://doi.org/10.1007/s11240-011-0005-9.
Article
CAS
Google Scholar
Cheema H, Khan A, Khan M, et al. Assesment of Bt cotton genotypes for Cry1Ac transgene and its expression. J Agric Sci. 2015;154(1):109–17. https://doi.org/10.1017/S0021859615000325.
Article
CAS
Google Scholar
Cheng C, Zhang Y, Chen X, et al. Co-expression of AtNHX1 and TsVP improves the salt tolerance of transgenic cotton and increases seed cotton yield in a saline field. Mol Breed. 2018;38(2):19. https://doi.org/10.1007/s11032-018-0774-5.
Article
CAS
Google Scholar
Choudhury FK, Rivero RM, Blumwald E, Mittler R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017;90(5):856–67. https://doi.org/10.1111/tpj.13299.
Article
CAS
PubMed
Google Scholar
Coudert Y, Périn C, Courtois B, et al. Genetic control of root development in rice, the model cereal. Trends Plant Sci. 2010;15(4):219–26. https://doi.org/10.1016/j.tplants.2010.01.008.
Article
CAS
PubMed
Google Scholar
Cui JQ, Hua YP, Zhou T, et al. Global landscapes of the Na+/H+ antiporter (NHX) family members uncover their potential roles in regulating the rapeseed resistance to salt stress. Int J Mol Sci. 2020;21(10):3429. https://doi.org/10.3390/ijms21103429.
Article
CAS
PubMed Central
Google Scholar
Dong H. Technology and field management for controlling soil salinity effects on cotton. Aust J Crop Sci. 2012;6(2):333–41. https://doi.org/10.3316/informit.054789177704118.
Article
CAS
Google Scholar
Du J, Huang YP, Xi J, et al. Functional gene-mining for salt-tolerance genes with the power of Arabidopsis. Plant J. 2008;56(4):653–64. https://doi.org/10.1111/j.1365-313X.2008.03602.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dürr J, Lolas IB, Sørensen BB, et al. The transcript elongation factor SPT4/SPT5 is involved in auxin-related gene expression in Arabidopsis. Nucleic Acids Res. 2014;42(7):4332–47. https://doi.org/10.1093/nar/gku096.
Article
CAS
PubMed
PubMed Central
Google Scholar
Falhof J, Pedersen JT, Fuglsang AT, Palmgren M. Plasma membrane H+-ATPase regulation in the center of plant physiology. Mol Plant. 2016;9(3):323–37. https://doi.org/10.1016/j.molp.2015.11.002.
Article
CAS
PubMed
Google Scholar
Fernando VD, Al Khateeb W, Belmonte MF, Schroeder DF. Role of Arabidopsis ABF1/3/4 during det1 germination in salt and osmotic stress conditions. Plant Mol Biol. 2018;97(1):149–63. https://doi.org/10.1007/s11103-018-0729-6.
Article
CAS
PubMed
Google Scholar
Foyer CH, Noctor G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell. 2005;17(7):1866–75. https://doi.org/10.1105/tpc.105.033589.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goh T, Joi S, Mimura T, Fukaki H. The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins. Development. 2012;139(5):883–93. https://doi.org/10.1242/dev.071928.
Article
CAS
PubMed
Google Scholar
Golldack D, Li C, Mohan H, Probst N. Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci. 2014;5:151. https://doi.org/10.3389/fpls.2014.00151.
Article
PubMed
PubMed Central
Google Scholar
Guo M, Xu F, Yamada J, et al. Core structure of the yeast Spt4-Spt5 complex: a conserved module for regulation of transcription elongation. Structure. 2008;16(11):1649–58. https://doi.org/10.1016/j.str.2008.08.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo YH, Yu YP, Wang D, et al. GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytol. 2009;183(1):62–75. https://doi.org/10.1111/j.1469-8137.2009.02838.x.
Article
CAS
PubMed
Google Scholar
Guo W, Li G, Wang N, et al. A Na+/H+ antiporter, K2-NhaD, improves salt and drought tolerance in cotton (Gossypium hirsutum L.). Plant Mol Biol. 2020;102(4):553–67. https://doi.org/10.1007/s11103-020-00969-1.
Article
CAS
PubMed
Google Scholar
Hartmann L, Pedrotti L, Weiste C, et al. Crosstalk between two bZIP signaling pathways orchestrates salt-induced metabolic reprogramming in Arabidopsis roots. Plant Cell. 2015;27(8):2244–60. https://doi.org/10.1105/tpc.15.00163.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hartzog GA, Fu J. The Spt4–Spt5 complex: a multi-faceted regulator of transcription elongation. Biochim Biophys Acta Gene Regul Mech. 2013;1829(1):105–15. https://doi.org/10.1016/j.bbagrm.2012.08.007.
Article
CAS
Google Scholar
He C, Yan J, Shen G, et al. Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol. 2005;46(11):1848–54. https://doi.org/10.1093/pcp/pci201.
Article
CAS
PubMed
Google Scholar
Higbie SM, Wang F, Stewart JM, et al. Physiological response to salt (NaCl) stress in selected cultivated tetraploid cottons. Int J Agron. 2010;2010:1–12. https://doi.org/10.1155/2010/643475.
Article
CAS
Google Scholar
Hochholdinger F, Park WJ, Sauer M, Woll K. From weeds to crops: genetic analysis of root development in cereals. Trends Plant Sci. 2004;9(1):42–8. https://doi.org/10.1016/j.tplants.2003.11.003.
Article
CAS
PubMed
Google Scholar
Ivushkin K, Bartholomeus H, Bregt AK, et al. Global mapping of soil salinity change. Remote Sens Environ. 2019;231: 111260. https://doi.org/10.1016/j.rse.2019.111260.
Article
Google Scholar
Ji G, Liang C, Cai Y, et al. A copy number variant at the HPDA-D12 locus confers compact plant architecture in cotton. New Phytol. 2021;229(4):2091–103. https://doi.org/10.1111/nph.17059.
Article
CAS
PubMed
Google Scholar
Jiang Y, Qiu Y, Hu Y, Yu D. Heterologous expression of AtWRKY57 confers drought tolerance in Oryza sativa. Front Plant Sci. 2016;7:145. https://doi.org/10.3389/fpls.2016.00145.
Article
PubMed
PubMed Central
Google Scholar
Khorsandi F, Anagholi A. Reproductive compensation of cotton after salt stress relief at different growth stages. J Agron Crop Sci. 2009;195(4):278–83. https://doi.org/10.1111/j.1439-037X.2009.00370.x.
Article
Google Scholar
Koch MA, German D. Taxonomy and systematics are key to biological information: Arabidopsis, Eutrema (Thellungiella), Noccaea and Schrenkiella (Brassicaceae) as examples. Front Plant Sci. 2013;4:267. https://doi.org/10.3389/fpls.2013.00267.
Article
PubMed
PubMed Central
Google Scholar
Koevoets IT, Venema JH, Elzenga JT, Testerink C. Roots withstanding their environment: Exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front Plant Sci. 2016;7:1335. https://doi.org/10.3389/fpls.2016.01335.
Article
PubMed
PubMed Central
Google Scholar
Liang W, Ma X, Wan P, Liu L. Plant salt-tolerance mechanism: A review. Biochem Biophys Res Commun. 2018;495(1):286–91. https://doi.org/10.1016/j.bbrc.2017.11.043.
Article
CAS
PubMed
Google Scholar
Liao Y, Zou HF, Wei W, et al. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta. 2008;228(2):225–40. https://doi.org/10.1007/s00425-008-0731-3.
Article
CAS
PubMed
Google Scholar
Liu G, Li X, Jin S, et al. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS ONE. 2014;9(1): e86895. https://doi.org/10.1371/journal.pone.0086895.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lv S, Zhang K, Gao Q, et al. Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol. 2008;49(8):1150–64. https://doi.org/10.1093/pcp/pcn090.
Article
CAS
PubMed
Google Scholar
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;9(10):490–8. https://doi.org/10.1016/j.tplants.2004.08.009.
Article
CAS
PubMed
Google Scholar
Naidoo G, Naidoo Y. Effects of salinity and nitrogen on growth, ion relations and proline accumulation in Triglochin bulbosa. Wetl Ecol Manag. 2001;9(6):491–7. https://doi.org/10.1023/A:1012284712636.
Article
CAS
Google Scholar
Ni WS, Lei ZY, Chen X, et al. Construction of a plant transformation-ready expression cDNA library for Thellungiella halophila using recombination cloning. J Integr Plant Biol. 2007;49(9):1313–9. https://doi.org/10.1111/j.1744-7909.2007.00483.x.
Article
CAS
Google Scholar
Pasapula V, Shen G, Kuppu S, et al. Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J. 2011;9(1):88–99. https://doi.org/10.1111/j.1467-7652.2010.00535.x.
Article
CAS
PubMed
Google Scholar
Raman R. The impact of Genetically Modified (GM) crops in modern agriculture: a review. GM Crops Food. 2017;8(4):195–208. https://doi.org/10.1080/21645698.2017.1413522.
Article
PubMed
PubMed Central
Google Scholar
Rojo-Gutiérrez E, Buenrostro-Figueroa J, López-Martínez L, et al. Biotechnological potential of cottonseed, a by-product of cotton production. In: Zakaria ZA, Aguilar CN, Kusumaningtyas RD, editors. Valorisation of agro-industrial residues–volume II: non-biological approaches. Cham, Switzerland: Springer; 2020. p. 63–82. https://doi.org/10.1007/978-3-030-39208-6_3. Accessed 3 Jan 2021.
Chapter
Google Scholar
Rontein D, Basset G, Hanson AD. Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng. 2002;4(1):49–56. https://doi.org/10.1006/mben.2001.0208.
Article
CAS
PubMed
Google Scholar
Shrivastava P, Kumar R. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci. 2015;22(2):123–31. https://doi.org/10.1016/j.sjbs.2014.12.001.
Article
CAS
PubMed
Google Scholar
Smith S, De Smet I. Root system architecture: insights from Arabidopsis and cereal crops. Phil Trans R Soc B. 2012;367(1595):441–1452. https://doi.org/10.1098/rstb.2011.0234.
Article
CAS
Google Scholar
Todeschini AL, Georges A, Veitia RA. Transcription factors: specific DNA binding and specific gene regulation. Trends Genet. 2014;30(6):211–9. https://doi.org/10.1016/j.tig.2014.04.002.
Article
CAS
PubMed
Google Scholar
Wang C, Lu G, Hao Y, et al. ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta. 2017;246(3):453–69. https://doi.org/10.1007/s00425-017-2704-x.
Article
CAS
PubMed
Google Scholar
Wang N, Wang X, Shi J, et al. Mepiquat chloride-priming induced salt tolerance during seed germination of cotton (Gossypium hirsutum L.) through regulating water transport and K+/Na+ homeostasis. Environ Exp Bot. 2019;159:168–78. https://doi.org/10.1016/j.envexpbot.2018.12.024.
Article
CAS
Google Scholar
Wu HJ, Zhang Z, Wang JY, et al. Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc Natl Acad Sci. 2012;109(30):12219–24. https://doi.org/10.1073/pnas.1209954109.
Article
PubMed
PubMed Central
Google Scholar
Yang S, Vanderbeld B, Wan J, Huang Y. Narrowing down the targets: Towards successful genetic engineering of drought-tolerant crops. Mol Plant. 2010;3(3):469–90. https://doi.org/10.1093/mp/ssq016.
Article
CAS
PubMed
Google Scholar
Yang R, Jarvis DJ, Chen H, et al. The reference genome of the halophytic plant Eutrema salsugineum. Front Plant Sci. 2013;4:46. https://doi.org/10.3389/fpls.2013.00046.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yarra R, Kirti P. Expressing class I wheat NHX (TaNHX2) gene in eggplant (Solanum melongena L.) improves plant performance under saline condition. Funct Integr Genom. 2019;19(4):541–54. https://doi.org/10.1007/s10142-019-00656-5.
Article
CAS
Google Scholar
Yarra R, He SJ, Abbagani S, et al. Overexpression of a wheat Na+/H+ antiporter gene (TaNHX2) enhances tolerance to salt stress in transgenic tomato plants (Solanum lycopersicum L.). Plant Cell Tissue Organ Cult (PCTOC). 2012;111(1):49–57. https://doi.org/10.1007/s11240-012-0169-y.
Article
CAS
Google Scholar
Yu L, Chen X, Wang Z, et al. Arabidopsis enhanced drought Tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Plant Physiol. 2013;162(3):1378–91. https://doi.org/10.1104/pp.113.217596.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu LH, Wu SJ, Peng YS, et al. Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnol J. 2016;14(1):72–84. https://doi.org/10.1111/pbi.12358.
Article
CAS
PubMed
Google Scholar
Zhang H, Shen G, Kuppu S, et al. Creating drought- and salt-tolerant cotton by overexpressing a vacuolar pyrophosphatase gene. Plant Signal Behav. 2011;6(6):861–3. https://doi.org/10.4161/psb.6.6.15223.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Zhang X, Hu Z, et al. Lack of K-dependent oxidative stress in cotton roots following coronatine-induced ROS accumulation. PLoS ONE. 2015;10(5): e0126476. https://doi.org/10.1371/journal.pone.0126476.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang F, Zhu G, Du L, et al. Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii. Sci Rep. 2016a;6(1):1–15. https://doi.org/10.1038/srep20582.
Article
CAS
Google Scholar
Zhang K, Song J, Chen X, et al. Expression of the Thellungiella halophila vacuolar H+-pyrophosphatase gene (TsVP) in cotton improves salinity tolerance and increases seed cotton yield in a saline field. Euphytica. 2016b;211(2):231–44. https://doi.org/10.1007/s10681-016-1733-z.
Article
CAS
Google Scholar
Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 2002;53(1):247–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu W, Miao Q, Sun D, et al. The mitochondrial phosphate transporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana. PLoS ONE. 2012;7(8): e43530. https://doi.org/10.1371/journal.pone.0043530.
Article
CAS
PubMed
PubMed Central
Google Scholar