Abbas G, Manzoor Khan T, Farooq J, et al. Exploring influential plant traits for enhancing upland cotton yield under salt stress. Front Mech Eng China. 2011;5(4):443–9. https://doi.org/10.1007/s11703-011-1125-z.
Article
Google Scholar
Abdelraheem A, Esmaeili N, O’Connell M, et al. Progress and perspective on drought and salt stress tolerance in cotton. Ind Crops Prod. 2019;130:118–29. https://doi.org/10.1016/j.indcrop.2018.12.070.
Article
CAS
Google Scholar
Agarwal PK, Shukla PS, Gupta K, et al. Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol. 2013;54(1):102–23. https://doi.org/10.1007/s12033-012-9538-3.
Article
CAS
PubMed
Google Scholar
Ahmad S, Iqbal MZ, Hussain A, et al. Salt tolerance of cotton (Gossypium hirsutum L.). Asian J Plant Sci. 2002;1(6):715–9.
Article
Google Scholar
Alvarez ME, Pennell RI, Meijer PJ, et al. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell. 1998;92(6):773–84. https://doi.org/10.1016/S0092-8674(00)81405-1.
Article
CAS
PubMed
Google Scholar
Awaly SBH, El-Maaty SA, Moghaieb REA. Changes in CAT2, NHX-1gene expression in tomato under salt stress condition. Plant Arch. 2020;20(Suppl 1):3201–7.
Google Scholar
Bueso E, Alejandro S, Carbonell P, et al. The lithium tolerance of the Arabidopsis cat2 mutant reveals a cross-talk between oxidative stress and ethylene. Plant J. 2007;52(6):1052–65. https://doi.org/10.1111/j.1365-313X.2007.03305.x.
Article
CAS
PubMed
Google Scholar
Cattivelli L, Rizza F, Badeck F-W, et al. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res. 2008;105(1–2):1–14. https://doi.org/10.1016/j.fcr.2007.07.004.
Article
Google Scholar
Chen C, Wang C, Liu Z, et al. iTRAQ-based proteomic technique provides insights into salt stress responsive proteins in Apocyni Veneti Folium (Apocynum venetum L.). Environ Exp Bot. 2020;180:104247. https://doi.org/10.1016/j.envexpbot.2020.104247.
Article
CAS
Google Scholar
Cheng N-H, Pittman JK, Shigaki T, et al. Functional association of Arabidopsis CAX1 and CAX3 is required for normal growth and ion homeostasis. Plant Physiol. 2005;138(4):2048–60. https://doi.org/10.1104/pp.105.061218.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng C, Zhang Y, Chen X, et al. Co-expression of AtNHX1 and TsVP improves the salt tolerance of transgenic cotton and increases seed cotton yield in a saline field. Mol Breed. 2018;38(2):1–15. https://doi.org/10.1007/s11032-018-0774-5.
Article
CAS
Google Scholar
Dong H, Li W, Tang W, et al. Furrow seeding with plastic mulching increases stand establishment and lint yield of cotton in a saline field. Agron J. 2008;100(6):1640–6. https://doi.org/10.2134/agronj2008.0074.
Article
Google Scholar
Du J, Huang YP, Xi J, et al. Functional gene-mining for salt-tolerance genes with the power of Arabidopsis. Plant J. 2008;56(4):653–64. https://doi.org/10.1111/j.1365-313X.2008.03602.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaxiola RA, Li J, Undurraga S, et al. Drought-and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci. 2001;98(20):11444–9. https://doi.org/10.1073/pnas.191389398.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghars MA, Parre E, Debez A, et al. Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation. J Plant Physiol. 2008;165(6):588–99. https://doi.org/10.1016/j.jplph.2007.05.014.
Article
CAS
PubMed
Google Scholar
Hasan H, Ali M, Javaid A, et al. Cellular mechanism of salinity tolerance in wheat. In: Orzituk M, Gul A, editors. Climate change and food security with emphasis on wheat. Cambridge, UK: Elsevier; 2020. p. 55–76.
Chapter
Google Scholar
Hasanuzzaman M, Bhuyan M, Parvin K, et al. Regulation of ROS metabolism in plants under environmental stress: a review of recent experimental evidence. Int J Mol Sci. 2020;21(22):8695. https://doi.org/10.3390/ijms21228695.
Article
CAS
PubMed Central
Google Scholar
He C, Yan J, Shen G, et al. Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol. 2005;46(11):1848–54. https://doi.org/10.1093/pcp/pci201.
Article
CAS
PubMed
Google Scholar
Heath MC. Involvement of reactive oxygen species in the response of resistant (hypersensitive) or susceptible cowpeas to the cowpea rust fungus. New Phytol. 1998;138(2):251–63. https://doi.org/10.1046/j.1469-8137.1998.00897.x.
Article
CAS
PubMed
Google Scholar
Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. 2nd ed. Berkeley, CA, USA: The College of Agriculture, University of California; 1950. p. 347.
Google Scholar
Kim S-Y, Lim J-H, Park M-R, et al. Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. BMB Rep. 2005;38(2):218–24.
Article
CAS
Google Scholar
Li X-B, Cai L, Cheng N-H, et al. Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber. Plant Physiol. 2002;130(2):666–74. https://doi.org/10.1104/pp.005538.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J-F, Park E, von Arnim AG, et al. The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods. 2009;5(1):1–15. https://doi.org/10.1186/1746-4811-5-6.
Article
CAS
Google Scholar
Li H, Chang J, Chen H, et al. Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front Plant Sci. 2017;8:295. https://doi.org/10.3389/fpls.2017.00295.
Article
PubMed
PubMed Central
Google Scholar
Liu G, Li X, Jin S, et al. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS ONE. 2014;9(1): e86895. https://doi.org/10.1371/journal.pone.0086895.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lv S, Zhang K, Gao Q, et al. Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol. 2008;49(8):1150–64. https://doi.org/10.1093/pcp/pcn090.
Article
CAS
PubMed
Google Scholar
Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys. 2005;444(2):139–58. https://doi.org/10.1016/j.abb.2005.10.018.
Article
CAS
PubMed
Google Scholar
Mittova V, Tal M, Volokita M, et al. Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiol Plant. 2002;115(3):393–400.
Article
CAS
PubMed
Google Scholar
Munns R. Comparative physiology of salt and water stress. Plant, Cell Environ. 2002;25(2):239–50. https://doi.org/10.1046/j.0016-8025.2001.00808.x.
Article
CAS
Google Scholar
Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–81. https://doi.org/10.1146/annurev.arplant.59.032607.092911.
Article
CAS
PubMed
Google Scholar
Nadarajah KK. ROS homeostasis in abiotic stress tolerance in plants. Int J Mol Sci. 2020;21(15):5208. https://doi.org/10.3390/ijms21155208.
Article
CAS
PubMed Central
Google Scholar
Parveen S, Iqbal RM, Akram M, et al. Improvement of growth and productivity of cotton (Gossypium hirsutum L.) through foliar applications of naphthalene acetic acid. Semin Ciênc Agrár. 2017;38(2):561–70. https://doi.org/10.5433/1679-0359.2017v38n2p561.
Article
CAS
Google Scholar
Pasapula V, Shen G, Kuppu S, et al. Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought-and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J. 2011;9(1):88–99. https://doi.org/10.1111/j.1467-7652.2010.00535.x.
Article
CAS
PubMed
Google Scholar
Peng Z, He S, Sun J, et al. Na+ compartmentalization related to salinity stress tolerance in upland cotton (Gossypium hirsutum) seedlings. Sci Rep. 2016;6:34548. https://doi.org/10.1038/srep34548.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pitzschke A, Forzani C, Hirt H. Reactive oxygen species signaling in plants. Antioxid Redox Signal. 2006;8(9–10):1757–64. https://doi.org/10.1089/ars.2006.8.1757.
Article
CAS
PubMed
Google Scholar
Qi ZM, Pan JB, Han X, et al. Identification of major QTLs and epistatic interactions for seed protein concentration in soybean under multiple environments based on a high-density map. Mol Breed. 2016;36(5):1–16. https://doi.org/10.1007/s11032-016-0475-x.
Article
CAS
Google Scholar
Razzaque S, Elias SM, Haque T, et al. Gene expression analysis associated with salt stress in a reciprocally crossed rice population. Sci Rep. 2019;9(1):1–17. https://doi.org/10.1038/s41598-019-44757-4.
Article
CAS
Google Scholar
Reddy N, Yang Y. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresour Technol. 2009;100(14):3563–9. https://doi.org/10.1016/j.biortech.2009.02.047.
Article
CAS
PubMed
Google Scholar
Sattar S, Hussnain T, Javaid A. Effect of NaCl salinity on cotton (Gossypium arboreum L.) grown on MS medium and in hydroponic cultures. J Anim Plant Sci. 2010;20:87–9.
Google Scholar
Sharma YK, Davis KR. Isolation of a novel Arabidopsis ozone-induced cDNA by differential display. Plant Mol Biol. 1995;29(1):91–8. https://doi.org/10.1007/BF00019121.
Article
CAS
PubMed
Google Scholar
Shen G, Wei J, Qiu X, et al. Co-overexpression of AVP1 and AtNHX1 in cotton further improves drought and salt tolerance in transgenic cotton plants. Plant Mol Biol Rep. 2015;33(2):167–77. https://doi.org/10.1007/s11105-014-0739-8.
Article
CAS
Google Scholar
Shulaev V, Oliver DJ. Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research. Plant Physiol. 2006;141(2):367–72. https://doi.org/10.1104/pp.106.077925.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song A, Li P, Fan F, et al. The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS ONE. 2014;9(11):e113782.
Article
PubMed
PubMed Central
Google Scholar
Tiwari RS, Picchioni GA, Steiner RL, et al. Genetic variation in salt tolerance at the seedling stage in an interspecific backcross inbred line population of cultivated tetraploid cotton. Euphytica. 2013;194(1):1–11. https://doi.org/10.1007/s10681-013-0927-x.
Article
Google Scholar
Vera-Estrella R, Barkla BJ, García-Ramírez L, et al. Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance. Plant Physiol. 2005;139(3):1507–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Li J. Molecular basis of plant architecture. Annu Rev Plant Biol. 2008;59:253–79. https://doi.org/10.1146/annurev.arplant.59.032607.092902.
Article
CAS
PubMed
Google Scholar
Wang J, Zhang H, Allen RD. Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol. 1999;40(7):725–32.
Article
CAS
PubMed
Google Scholar
Wang Z, Li P, Fredricksen M, et al. Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Sci. 2004;166(3):609–16. https://doi.org/10.1016/j.plantsci.2003.10.030.
Article
CAS
Google Scholar
Waraich EA, Ahmad R, Ashraf M. Role of mineral nutrition in alleviation of drought stress in plants. Aust J Crop Sci. 2011;5(6):764–77.
CAS
Google Scholar
Wohlgemuth H, Mittelstrass K, Kschieschan S, et al. Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant Cell Environ. 2002;25(6):717–26. https://doi.org/10.1046/j.1365-3040.2002.00859.x.
Article
CAS
Google Scholar
Zhang H, Dong H, Li W, et al. Increased glycine betaine synthesis and salinity tolerance in AhCMO transgenic cotton lines. Mol Breed. 2009;23(2):289–98. https://doi.org/10.1007/s11032-008-9233-z.
Article
CAS
Google Scholar
Zhang H, Dong H, Li W, et al. Effects of soil salinity and plant density on yield and leaf senescence of field-grown cotton. J Agron Crop Sci. 2012;198(1):27–37. https://doi.org/10.1111/j.1439-037X.2011.00481.x.
Article
CAS
Google Scholar
Zhang L, Zhang G, Wang Y, et al. Effect of soil salinity on physiological characteristics of functional leaves of cotton plants. J Plant Res. 2013;211(2):293–304. https://doi.org/10.1007/s10265-012-0533-3.
Article
CAS
Google Scholar
Zhang K, Song J, Chen X, et al. Expression of the Thellungiella halophila vacuolar H+-pyrophosphatase gene (TsVP) in cotton improves salinity tolerance and increases seed cotton yield in a saline field. Euphytica. 2016;211(2):231–44. https://doi.org/10.1007/s10681-016-1733-z.
Article
CAS
Google Scholar
Zhao J, Barkla BJ, Marshall J, et al. The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity. Planta. 2008;227(3):659–69.
Article
CAS
PubMed
Google Scholar
Zhao Z, Li Y, Liu H, et al. Genome-wide expression analysis of salt-stressed diploid and autotetraploid Paulownia tomentosa. PLoS ONE. 2017;12(10):e0185455.
Article
PubMed
PubMed Central
Google Scholar
Zulfiqar F, Akram NA, Ashraf M. Osmoprotection in plants under abiotic stresses: new insights into a classical phenomenon. Planta. 2019;251(1):3. https://doi.org/10.1007/s00425-019-03293-1.
Article
CAS
PubMed
Google Scholar