Abbas S. Climate change and cotton production: an empirical investigation of Pakistan. Environ Sci Pollut Res Int. 2020;27:29580–8. https://doi.org/10.1007/s11356-020-09222-0.
Article
Google Scholar
Abbas S, Waheed A. Trade competitiveness of Pakistan: evidence from the revealed comparative advantage approach. Compet Rev. 2017;27(5):462–75. https://doi.org/10.1108/CR-12-2015-0092.
Article
Google Scholar
Abbas A, Iqbal MA, Rahman MU, et al. Estimating genetic diversity among selected cotton genotypes and the identificationof DNA markers associated with resistance to cotton leaf curl disease. Turk J Bot. 2015;39(6):1033–41.
Article
CAS
Google Scholar
Abdalla A, Reddy O, Elzik K, et al. Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP. Theor Appl Genet. 2001;102(2):222–9. https://doi.org/10.1007/s001220051639.
Article
CAS
Google Scholar
Abdurakhmonov IY. Exploiting genetic diversity. Adv Genet. 2007;23:272–375.
Google Scholar
Abro G, Syed T, Tunio G, et al. Performance of transgenic Bt cotton against insect pest infestation. Biotech. 2004;3(1):75–81.
Google Scholar
Afzal I, Shabir R, Rauf S. Seed production technologies of some major field crops. In: Hasanuzzaman M, editor. Agronomic crops. Singapore: Springer; 2019. p. 655–78. https://doi.org/10.1007/978-981-32-9151-5_28.
Chapter
Google Scholar
Ahmad S, Raza I. Optimization of management practices to improve cotton fiber quality under irrigated arid environment. J Food Agric Environ. 2014;2(2):609–13.
Google Scholar
Ahmad F, Perveen A, Mohammad N, et al. Heat stress in cotton: responses and adaptive mechanisms. In: Ahmad S, Hasanuzzaman M, editors. Cotton production and uses. Singapore: Springer; 2020. p. 393–428. https://doi.org/10.1007/978-981-15-1472-2_20.
Chapter
Google Scholar
Ahmed S, Muhmmad KI, Shahid M, et al. Comparison of antibiosis of spotted bollworm, Earias vittella (Fab.), on two Bt-and one non Bt-cotton varieties. Pak J Zool. 2012;44(2):463–8.
Google Scholar
Ahmed R, Nadeem I, Yousaf MJ, et al. Impact of dusky cotton bug (Oxycarenus laetus Kirby) on seed germination, lint color and seed weight in cotton crop. J Ento Zool Study. 2015;3(3):335–8.
Google Scholar
Ahmed H, Nazir MF, Pan Z, et al. Genotyping by sequencing revealed QTL hotspots for trichome-based plant defense in Gossypium hirsutum. Genes. 2020;11(4):368. https://doi.org/10.3390/genes11040368.
Article
CAS
Google Scholar
Akhtar J, Saqib Z, Sarfraz M, et al. Evaluating salt tolerant cotton genotypes at different levels of NaCl stress in solution and soil culture. Pak J Bot. 2010;42(4):2857–66.
Google Scholar
Akhtar S, Shahid AA, Rao AQ, et al. Genetic effects of Calotropis procera CpTIP1 gene on fiber quality in cotton (Gossypium hirsutum). Adv Life Sci. 2014;1:223–30.
Google Scholar
Akhtar ZR, Irshad U, Majid M, et al. Risk assessment of transgenic cotton against non-target whiteflies, thrips, jassids and aphids under field conditions in Pakistan. J Entmol and Zool Study. 2018;6(2):93–6.
Google Scholar
Ali M. Cotton research & development memoranda till 60s. Islamabad: Pakistan Academy of Sciences; 2007. p. 34–9.
Google Scholar
Ali H, Chaudhary IS, Ali H. Production cost of major crops in district Bahawalpur (Pakistan): an economic analysis. Pak J Life Soc Sci. 2015;13(2):68–72.
Google Scholar
Ali MA, Farooq J, Batool A, et al. Cotton production in Pakistan. In: Khawar J, Bhagirath SC, editors. Cotton production. New Jersey: John Wiley & Sons; 2019. p. 249–76. https://doi.org/10.1002/9781119385523.
Chapter
Google Scholar
Álvarez I, Wendel JF. Cryptic interspecific introgression and genetic differentiation within Gossypium aridum (Malvaceae) and its relatives. Evolution. 2006;60(3):505–17.
Google Scholar
Arshad M, Khan RR, Aslam A, Akbar W. Transgenic Bt cotton: effects on target and non-target insect diversity. In: Rahman M, Zafar Y, editors. Past, present and future trends in cotton breeding. London: Intechopen; 2018. p. 155–74. https://doi.org/10.5772/intechopen.73182.
Chapter
Google Scholar
Ashraf S, Sangi AH, Hassan ZY, Luqman M. Future of cotton sector in Pakistan: a 2025 Outlook. Pak J Agri Res. 2018;31(2):145–50.
Ashraf F, Iqbal N, Nazeer W, et al. Conventional breeding of cotton. In: Khan Z, Ali Z, Khan AA, editors. Cotton breeding and biotechnology. London: CRC Press; 2022. p. 29–45. https://doi.org/10.1201/9781003096856.
Chapter
Google Scholar
Aslam M, Razaq M, Saeed NA, et al. Comparative resistance of different cotton varieties against bollworm complex. Int J Agric Biol. 2004;6:39–41.
Google Scholar
Bakhsh K, Hassan I, Maqbool A. Factors affecting cotton yield: a case study of Sargodha (Pakistan). J Agri Social Sci. 2005;1(4):332–4.
Google Scholar
Basal H. Response of cotton (Gossypium hirsutum L.) genotypes to salt stress. Pak J Bot. 2010;42(1):505–11.
Google Scholar
Boopathi NM, Sathish S, Kavitha P, et al. Molecular breeding for genetic improvement of cotton (Gossypium spp.). In: Khayri J, Jain S, Johnson D, editors. Advances in plant breeding strategies: breeding, biotechnology and molecular tools. Dordrecht: Springer; 2015. p. 613–45. https://doi.org/10.1007/978-3-319-22521-0_21.
Chapter
Google Scholar
Bourland F, Myers GO. Conventional cotton breeding. In: Fang DD, Richard GP, editors. Agronomy monographs. Madison: ASA, CSSA, SSSA; 2015. p. 1–25. https://doi.org/10.2134/agronmonogr57.2013.0025
Campbell B, Saha S, Percy R, et al. Status of the global cotton germplasm resources. Crop Sci. 2010;50(4):1161–79. https://doi.org/10.2135/cropsci2009.09.0551.
Article
Google Scholar
Chen G, Du XM. Genetic diversity of source germplasm of upland cotton in China as determined by SSR marker analysis. Acta Genet Sin. 2006;33(8):733–45. https://doi.org/10.1016/S0379-4172(06)60106-6.
Article
CAS
Google Scholar
Cotictics 2021. Annual cotton statistical bulletin of Pakistan Central Cotton Committee (PCCC), Multan, Pakistan. 2021. http://pccc.gov.pk/. Accessed 25 Jan 2022.
Dilnur T, Peng Z, Pan Z, et al. Association analysis of salt tolerance in asiatic cotton (Gossypium arboretum) with SNP markers. Int J Mol Sci. 2019;20(9):2168. https://doi.org/10.3390/ijms20092168.
Article
CAS
Google Scholar
Farooq J, Rizwan M, Saleem S, et al. Determination of genetic variation for earliness, yield and fiber traits in advance lines of cotton (Gossypium hirsutum). Adv Agri Sci. 2018;6(2):59–74.
Google Scholar
Feng J, Zhang X, Zhang M, et al. Physical mapping and InDel marker development for the restorer gene Rf2 in cytoplasmic male sterile CMS-D8 cotton. BMC Genom. 2021;22(1):1–12. https://doi.org/10.1186/s12864-020-07342-y.
Article
CAS
Google Scholar
Geng X, Qu Y, Jia Y, et al. Assessment of heterosis based on parental genetic distance estimated with SSR and SNP markers in upland cotton (Gossypium hirsutum L.). BMC Genom. 2021;22(1):1–11. https://doi.org/10.1186/s12864-021-07431-6.
Article
CAS
Google Scholar
Ghafoor A, Hassan M, Alvi ZH, et al. Impact of different varieties of stub cotton on population dynamics of whitefly at Faisalabad. Pakistan Pak J Zool. 2011;43(1):25–8.
Google Scholar
Hashmi JA, Zafar Y, Arshad M, et al. Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences. Virus Genes. 2011;42(2):286–96. https://doi.org/10.1007/s11262-011-0569-9.
Article
CAS
Google Scholar
Havey MJ. The use of cytoplasmic male sterility for hybrid seed production. In: Daniell H, Chase C, editors. Molecular biology and biotechnology of plant organelles. Dordrecht: Springer; 2004. p. 623–34. https://doi.org/10.1007/978-1-4020-3166-3_23.
Chapter
Google Scholar
Hussain B. Modernization in plant breeding approaches for improving biotic stress resistance in crop plants. Turk J Agri Forest. 2015;39(4):515–30.
Article
CAS
Google Scholar
Hutchinson J. New evidence on the origin of the old world cottons. Heredity. 1954;8(2):225–41. https://doi.org/10.1038/hdy.1954.20.
Article
Google Scholar
Iqbal MA, Rahman M. Identification of marker-trait associations for lint traits in cotton. Front Plant Sci. 2017;8:86. https://doi.org/10.3389/fpls.2017.00086.
Article
Google Scholar
Iqbal MJ, Aziz N, Saeed N, et al. Genetic diversity evaluation of some elite cotton varieties by RAPD analysis. Theor Appl Genet. 1997;94(1):139–44. https://doi.org/10.1007/s001220050392.
Article
CAS
Google Scholar
Iqbal MS, Singh AK, Ansari MI. Effect of drought stress on crop production. In: Rakshit A, Singh H, Singh A, et al. editors. New frontiers in stress management for durable agriculture. Singapore: Springer; 2020. p. 35–47. https://doi.org/10.1007/978-981-15-1322-0_3.
Chapter
Google Scholar
Jha UC, Bohra A, Singh NP. Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed. 2014;133(6):679–701. https://doi.org/10.1111/pbr.12217.
Article
Google Scholar
Kalia RK, Rai MK, Kalia S, et al. Microsatellite markers: an overview of the recent progress in plants. Euphytica. 2011;177(3):309–34. https://doi.org/10.1007/s10681-010-0286-9.
Article
CAS
Google Scholar
Karar H, Bashir MA, Haider M, et al. Pest susceptibility, yield and fiber traits of transgenic cotton cultivars in Multan, Pakistan. PLoS ONE. 2020;15(7): e0236340. https://doi.org/10.1371/journal.pone.0236340.
Article
CAS
Google Scholar
Keerio AA, Shen C, Nie Y, et al. QTL mapping for fiber quality and yield traits based on introgression lines derived from Gossypium hirsutum×G. tomentosum. Int J Mol Sci. 2018;19(1):243. https://doi.org/10.3390/ijms19010243.
Article
CAS
Google Scholar
Khan AI, Awan FS, Sadia B, et al. Genetic diversity studies among coloured cotton genotypes by using RAPD markers. Pak J Bot. 2010;42(1):71–7.
Google Scholar
Khan A, Tan DKY, Munsif F, et al. Nitrogen nutrition in cotton and control strategies for greenhouse gas emissions: a review. Environ Sci Pollut Res. 2017;24(30):23471–87. https://doi.org/10.1007/s11356-017-0131-y.
Article
CAS
Google Scholar
Khuhro SN, Ahmad F, Kalroo A, et al. Monitoring and population dynamics of pink bollworm on cotton in different cotton growing areas of Sindh-Pakistan. Int J Interdiscipl Res Sci Soci Cul. 2015;1(2):51–60.
Google Scholar
Kim C, Guo H, Kong W, et al. Application of genotyping by sequencing technology to a variety of crop breeding programs. Plant Sci. 2016;242:14–22. https://doi.org/10.1016/j.plantsci.2015.04.016.
Article
CAS
Google Scholar
Li C, Wang X, Dong N, et al. QTL analysis for early-maturing traits in cotton using two upland cotton (Gossypium hirsutum L.) crosses. Breed Sci. 2013;63(2):154–63. https://doi.org/10.1270/jsbbs.63.154.
Article
Google Scholar
Li F, Fan G, Wang K, et al. Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet. 2014;46:567–72. https://doi.org/10.1038/ng.2987.
Article
CAS
Google Scholar
Li X, Shahzad K, Guo L, et al. Using yield quantitative trait locus targeted SSR markers to study the relationship between genetic distance and yield heterosis in upland cotton (Gossypium hirsutum). Plant Breed. 2019;138(1):105–13. https://doi.org/10.1111/pbr.12668.
Article
CAS
Google Scholar
Liu S, Cantrell R, McCarty J Jr, et al. Simple sequence repeat-based assessment of genetic diversity in cotton race stock accessions. Crop Sci. 2000;40(5):1459–69. https://doi.org/10.2135/cropsci2000.4051459x.
Article
CAS
Google Scholar
Liu X, Zhao B, Zheng H-J, et al. Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci Rep. 2015;5(1):1–14. https://doi.org/10.1038/srep14139.
Article
CAS
Google Scholar
Liu R, Gong J, Xiao X, et al. GWAS analysis and QTL identification of fiber quality traits and yield components in upland cotton using enriched high-density SNP markers. Front Plant Sci. 2018;9:1067. https://doi.org/10.3389/fpls.2018.01067.
Article
Google Scholar
Lu H, Myers G. Genetic relationships and discrimination of ten influential upland cotton varieties using RAPD markers. Theor Appl Genet. 2002;105(2):325–31. https://doi.org/10.1007/s00122-002-0947-8.
Article
CAS
Google Scholar
Lu Y, Wu K, Jiang Y, et al. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature. 2012;487(7407):362–5. https://doi.org/10.1038/nature11153.
Article
CAS
Google Scholar
Ma X, Smale M, Spielman DJ, et al. A question of integrity: variants of bt cotton, pesticides and productivity in Pakistan. J Agri Eco. 2017;68(2):366–85. https://doi.org/10.1111/1477-9552.12174.
Article
Google Scholar
Magwanga RO, Lu P, Kirungu JN, et al. Identification of QTLs and candidate genes for physiological traits associated with drought tolerance in cotton. J Cotton Res. 2020;3(1):1–33. https://doi.org/10.1186/s42397-020-0043-0.
Article
CAS
Google Scholar
Majeed MZ, Javed M, Riaz MA, et al. Population dynamics of sucking pest complex on some advanced genotypes of cotton under unsprayed conditions. Paki J Zool. 2016;48(2):475–80.
CAS
Google Scholar
Majeed S, Rana IA, Atif RM, et al. Role of SNPs in determining QTLs for major traits in cotton. J Cotton Res. 2019;2(1):1–13. https://doi.org/10.1186/s42397-019-0022-5.
Article
CAS
Google Scholar
Majeed S, Rana IA, Mubarik MS, et al. Heat stress in cotton: a review on predicted and unpredicted growth-yield anomalies and mitigating breeding strategies. Agronomy. 2021;11(9):1825. https://doi.org/10.3390/agronomy11091825.
Article
CAS
Google Scholar
Malik W, Ashraf J, Iqbal MZ, et al. Molecular markers and cotton genetic improvement: current status and future prospects. Sci World J. 2014;2014: 607091. https://doi.org/10.1155/2014/607091.
Article
Google Scholar
Masood A, Arif M, Hamed M, et al. Field performance of trichogramma chilonis against cotton bollworms infestation in different cotton varieties as a sustainable IPM approach. Pak J Agri Agril Engg Vet Sci. 2011;27(2):176–84.
Google Scholar
Men X, Ge F, Edwards CA, et al. The influence of pesticide applications on Helicoverpa armigera Hübner and sucking pests in transgenic Bt cotton and non-transgenic cotton in China. Crop Prot. 2005;24(4):319–24. https://doi.org/10.1016/j.cropro.2004.08.006.
Article
CAS
Google Scholar
Mohan KS, Ravi KC, Suresh PJ, et al. Field resistance to the Bacillus thuringiensis protein Cry1Ac expressed in Bollgard® hybrid cotton in pink bollworm, Pectinophora gossypiella (Saunders), populations in India. Pest Manag Sci. 2016;72(4):738–46. https://doi.org/10.1002/ps.4047.
Article
CAS
Google Scholar
Moulherat C, Tengberg M, Haquet JF, Mille B. First evidence of cotton at Neolithic Mehrgarh, Pakistan: analysis of mineralized fibres from a copper bead. J Arch Sci. 2002;29(12):1393–401. https://doi.org/10.1006/jasc.2001.0779.
Article
Google Scholar
Mumtaz AS, Naveed M, Shinwari ZK. Assessment of genetic diversity and germination pattern in selected cotton genotypes of Pakistan. Pak J Bot. 2010;42(6):3949–56.
CAS
Google Scholar
Oosterhuis DM. Potassium management of cotton. In: Oosterhuis DM, editor. Potassium for sustainable crop production. Fayetteville, AR, USA: University of Arkansas; 2002. p. 321–46.
Pakistan Economic Survey 2020–21 in Agricuture. http://parb.punjab.gov.pk/. Accessed 21 Jan 2022.
Pettigrew W. The effect of higher temperatures on cotton lint yield production and fiber quality. Crop Sci. 2008;48(1):278–85. https://doi.org/10.2135/cropsci2007.05.0261.
Article
Google Scholar
Puchta H, Fauser F. Gene targeting in plants: 25 years later. Int J Devel Biol. 2013;57(6–7–8):629–37. https://doi.org/10.1387/ijdb.130194hp.
Article
CAS
Google Scholar
Qamer Z, Chaudhary MT, Du XM, et al. Review of oxidative stress and antioxidative defense mechanisms in Gossypium hirsutum L. in response to extreme abiotic conditions. J Cotton Res. 2021;4:9. https://doi.org/10.1186/s42397-021-00086-4.
Article
CAS
Google Scholar
Raania A, Zafar A. Development, adoption and performance of Bt cotton in Pakistan: a review. Pak J Agri Res. 2009;22(1/2):73–85.
Google Scholar
Rahman M, Hussain D, Zafar Y. Estimation of genetic divergence among elite cotton cultivars-genotypes by DNA fingerprinting technology. Crop Sci. 2002;42(6):2137–44. https://doi.org/10.2135/cropsci2002.2137.
Article
CAS
Google Scholar
Rahman MU, Khan AQ, Rahmat Z, et al. Genetics and genomics of cotton leaf curl disease, its viral causal agents and whitefly vector: a way forward to sustain cotton fiber security. Front Plant Sci. 2017;8:1157. https://doi.org/10.3389/fpls.2017.01157.
Article
Google Scholar
Rahnama A, James RA, Poustini K, et al. Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol. 2010;37(3):255–63. https://doi.org/10.1071/FP09148.
Article
Google Scholar
Ranjan A, Nigam D, Asif MH, et al. Genome wide expression profiling of two accession of G. herbaceum L. in response to drought. BMC Genom. 2012;13(1):1–18. https://doi.org/10.1186/1471-2164-13-94.
Article
CAS
Google Scholar
Rauf S, Shehzad M, Al-Khayri JM, et al. Cotton (Gossypium hirsutum L.) breeding strategies. In: Khayri J, Jain S, Johnson D, editors. Advances in plant breeding strategies. Industrial and food crops. Cham, Switzerland: Springer; 2019. p. 29–59. https://doi.org/10.1007/978-3-030-23265-8_2.
Chapter
Google Scholar
Razzaq A, Zafar MM, ALi A, et al. Cotton germplasm improvement and progress in Pakistan. J Cotton Res. 2021;4:1. https://doi.org/10.1186/s42397-020-00077-x.
Article
Google Scholar
Rieseberg LH, Archer MA, Wayne RK. Transgressive segregation, adaptation and speciation. Heredity. 1999;83(4):363–72. https://doi.org/10.1038/sj.hdy.6886170.
Article
Google Scholar
Saeed S, Ahmad M, Ahmad M, Kwon YJ. Insecticidal control of the mealybug Phenacoccus gossypiphilous (Hemiptera: Pseudococcidae), a new pest of cotton in Pakistan. Ento Res. 2007;37(2):76–80. https://doi.org/10.1111/j.1748-5967.2007.00047.x.
Article
Google Scholar
Said JI, Lin Z, Zhang X, et al. A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genom. 2013;14(1):1–22. https://doi.org/10.1186/1471-2164-14-776.
Article
CAS
Google Scholar
Salahuddin S, Abro S, Rehman A, et al. Correlation analysis of seed cotton yield with some quantitative traits in upland cotton (Gossypium hirsutum L.). Pak J Bot. 2010;42(6):3799–805.
Google Scholar
Saleem M, Malik T, Shakeel A, et al. QTL mapping for some important drought tolerant traits in upland cotton. J Anim Plant Sci. 2015;25(2):502–9.
CAS
Google Scholar
Saleem MF, Sammar Raza MA, Ahmad S, et al. Understanding and mitigating the impacts of drought stress in cotton-a review. Pak J Agri Sci. 2016;53(3):609–23.
Google Scholar
Saleem MA, Amjid MW, Ahmad MQ, et al. Marker assisted selection for relative water content, excised leaf water loss and cell membrane stability in cotton. Adv Life Sci. 2018;5(2):56–60.
Google Scholar
Saleem MA, Malik W, Qayyum A, et al. Impact of heat stress responsive factors on growth and physiology of cotton (Gossypium hirsutum L.). Mol Biol Rep. 2021;48(2):1069–79. https://doi.org/10.1007/s11033-021-06217-z.
Saranga Y, Paterson AH, Levi A. Bridging classical and molecular genetics of abiotic stress resistance in cotton. In: Paterson AH, editor. Genetics and genomics of cotton. Plant genetics and genomics: crops and models. New York: Springer; 2009. p. 337–52.
Chapter
Google Scholar
Sattar MN, Kvarnheden A, Saeed M, et al. Cotton leaf curl disease-an emerging threat to cotton production worldwide. J General Virol. 2013;94(4):695–710. https://doi.org/10.1099/vir.0.049627-0.
Article
CAS
Google Scholar
Sawan ZM, Mahmoud MH, El-Guibali AH. Influence of potassium fertilization and foliar application of zinc and phosphorus on growth, yield components, yield and fiber properties of Egyptian cotton (Gossypium barbadense L.). J Plant Ecol. 2008;1(4):259–70. https://doi.org/10.1093/jpe/rtn021.
Article
Google Scholar
Sawan ZM, Mahmoud M, El-Guibali AH. Response of yield, yield components, and fiber properties of Egyptian cotton (Gossypium barbadense L.) to nitrogen fertilization and foliar-applied potassium and mepiquat chloride. J Cotton Sci. 2006;10(4):24–34.
Shahbaz M, Ashraf M. Improving salinity tolerance in cereals. Crit Rev Plant Sci. 2013;32(4):237–49. https://doi.org/10.1080/07352689.2013.758544.
Article
Google Scholar
Shaheen T, Tabbasam N, Iqbal MA, et al. Cotton genetic resources. A review. Agron Sustain Dev. 2012;32(2):419–32.
Article
Google Scholar
Shahzad K, Li X, Qi T, et al. Genetic analysis of yield and fiber quality traits in upland cotton (Gossypium hirsutum L.) cultivated in different ecological regions of China. J Cotton Res. 2019a;2:14. https://doi.org/10.1186/s42397-019-0031-4.
Article
CAS
Google Scholar
Shahzad K, Qi T, Guo L, et al. Adaptability and stability comparisons of inbred and hybrid cotton in yield and fiber quality traits. Agronomy. 2019b;9(9):516. https://doi.org/10.3390/agronomy9090516.
Article
Google Scholar
Shahzad K, Zhang X, Guo L, et al. Comparative transcriptome analysis between inbred and hybrids reveals molecular insights into yield heterosis of upland cotton. BMC Plant Biol. 2020a;20(1):1–18. https://doi.org/10.1186/s12870-020-02442-z.
Article
CAS
Google Scholar
Shahzad K, Zhang X, Guo L, et al. Comparative transcriptome analysis of inbred lines and contrasting hybrids reveals overdominance mediate early biomass vigor in hybrid cotton. BMC Genom. 2020b;21(1):1–16. https://doi.org/10.1186/s12864-020-6561-9.
Article
CAS
Google Scholar
Shi L, Hu L, Hu B, et al. QTL mapping of yield and agronomic traits of interspecific hybrid cotton. Xinjiang Agri Sci. 2010;47(1):67–72.
CAS
Google Scholar
Shuli F, Jarwar AH, Wang X, et al. Overview of the cotton in Pakistan and its future prospects. Pak J Agri Res. 2018;31(4):396.
Google Scholar
Singh B. Plant breeding, principles and methods. New Delhi: Kalyani publishers; 1985.
Google Scholar
Singh BD, Singh AK. Introduction to marker-assisted crop improvement. In: Singh BD, Singh AK, editors. Marker-assisted plant breeding: principles and practices. New Delhi: Springer; 2015. p. 3–16. https://doi.org/10.1007/978-81-322-2316-0.
Chapter
Google Scholar
Song X, Zhang T. Quantitative trait loci controlling plant architectural traits in cotton. Plant Sci. 2009;177(4):317–23. https://doi.org/10.1016/j.plantsci.2009.05.015.
Article
CAS
Google Scholar
Sun Z, Li H, Zhang Y, et al. Identification of SNPs and candidate genes associated with salt tolerance at the seedling stage in cotton (Gossypium hirsutum L.). Front Plant Sci. 2018;9:1011. https://doi.org/10.3389/fpls.2018.01011.
Article
Google Scholar
Tarazi R, Jimenez JLS, Vaslin MF. Biotechnological solutions for major cotton (Gossypium hirsutum) pathogens and pests. Biotech Res Innov. 2020;3:19–26. https://doi.org/10.1016/j.biori.2020.01.001.
Article
Google Scholar
Tariq MI, Afzal S, Hussain I, et al. Pesticides exposure in Pakistan: a review. Environ Int. 2007;33(8):1107–22. https://doi.org/10.1016/j.envint.2007.07.012.
Article
CAS
Google Scholar
Tiwari RS, Picchioni GA, Steiner RL, et al. Genetic variation in salt tolerance during seed germination in a backcross inbred line population and advanced breeding lines derived from Upland cotton× Pima cotton. Crop Sci. 2013;53(5):1974–82. https://doi.org/10.2135/cropsci2013.01.0028.
Article
Google Scholar
Ullah I, Iram A, Iqbal M, et al. Genetic diversity analysis of Bt cotton genotypes in Pakistan using simple sequence repeat markers. Genet Mol Res. 2012;11(1):597–605. https://doi.org/10.4238/2012.March.14.3.
Article
CAS
Google Scholar
ur-Rahman M, Rahmat Z, Mahmood A, et al. Cotton germplasm of Pakistan. In: Abdurakhmonov IY, editor. World cotton germplasm resources. IntechOpen: London; 2014. p. 137–66. https://doi.org/10.5772/58620.
Chapter
Google Scholar
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63. https://doi.org/10.1038/nrg2484.
Article
CAS
Google Scholar
Wang H, Huang C, Guo H, et al. QTL mapping for fiber and yield traits in upland cotton under multiple environments. PLoS ONE. 2015;10(6): e0130742. https://doi.org/10.1371/journal.pone.0130742.
Article
CAS
Google Scholar
Wang H, Siddiqui MQ, Memon H. Physical Structure, properties and quality of cotton. In: Gordon S, Hsieh YL, editors. Cotton science and processing technology. Landon: CRC Press; 2020. p. 79–97.
Chapter
Google Scholar
Wendel JF, Cronn RC. Polyploidy and the evolutionary history of cotton. Adv Agron. 2003;78(13986):78004–8.
Google Scholar
Wricke G, Weber E. Basic population genetics. In: Günter W, Eberhard W, editors. Quantitative genetics and selection in plant breeding. New York: De Gruyter; 1986. p. 1–40. https://doi.org/10.1515/9783110837520.1.
Wu Y, Yin J, Guo W, et al. Heterosis performance of yield and fibre quality in F1 and F2 hybrids in upland cotton. Plant Breed. 2004;123(3):285–9. https://doi.org/10.1111/j.1439-0523.2004.00990.x.
Article
Google Scholar
Wu J, Gong Y, Cui M, et al. Molecular characterization of cytoplasmic male sterility conditioned by Gossypium harknessii cytoplasm (CMS-D2) in upland cotton. Euphytica. 2011;181(1):17–29. https://doi.org/10.1007/s10681-011-0357-6.
Article
CAS
Google Scholar
Yasir M, He S, Sun G, et al. A genome-wide association study revealed key SNPs/genes associated with salinity stress tolerance in upland cotton. Genes. 2019;10:829. https://doi.org/10.3390/genes10100829.
Article
CAS
Google Scholar
Yasmin T, Tabbasam N, Ullah I, et al. Studying the extent of genetic diversity among Gossypium arboreum L. genotypes/cultivars using DNA fingerprinting. Genet Resour Crop Evol. 2008;55(3):331–9. https://doi.org/10.1007/s10722-007-9238-1.
Article
CAS
Google Scholar
Yu J, Yu S, Fan S, et al. Mapping quantitative trait loci for cottonseed oil, protein and gossypol content in a Gossypium hirsutum×Gossypium barbadense backcross inbred line population. Euphytica. 2012;187(2):191–201. https://doi.org/10.1007/s10681-012-0630-3.
Article
Google Scholar
Zaidi SSEA, Mansoor S, Paterson A. The rise of cotton genomics. Trends Plant Sci. 2018;23(11):953–5. https://doi.org/10.1016/j.tplants.2018.08.009.
Article
CAS
Google Scholar
Zhang Q, Lu YX, Xu WH. Proteomic and metabolomic profiles of larval hemolymph associated with diapause in the cotton bollworm, Helicoverpa Armigera. BMC Genom. 2013;14:751. https://doi.org/10.1186/1471-2164-14-751.
Article
CAS
Google Scholar
Zhang T, Hu Y, Jiang W, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechol. 2015;33:531–7. https://doi.org/10.1038/nbt.3207.
Article
CAS
Google Scholar
Zhang S, Feng L, Xing L, et al. New QTL s for lint percentage and boll weight mined in introgression lines from two feral landraces into Gossypium hirsutum acc TM-1. Plant Breed. 2016;135(1):90–101. https://doi.org/10.1111/pbr.12337.
Article
CAS
Google Scholar
Zhang M, Guo L, Qi T, et al. Integrated methylome and transcriptome analysis between the CMS-D2 Line ZBA and its maintainer line ZB in upland cotton. Inter J Mole Sci. 2019;20:6070. https://doi.org/10.3390/ijms20236070.
Article
CAS
Google Scholar
Zhang X, Zhang Z, Zhou R, et al. Ratooning annual cotton (Gossypium spp.) for perennial utilization of heterosis. Front Plant Sci. 2020;11:554970. https://doi.org/10.3389/fpls.2020.554970.
Article
Google Scholar
Zhou X, Liu Y, Robinson DJ, et al. Four DNA-A variants among Pakistani isolates of cotton leaf curl virus and their affinities to DNA-A of geminivirus isolates from okra. J General Virol. 1998;79(4):915–23. https://doi.org/10.1099/0022-1317-79-4-915.
Article
CAS
Google Scholar
Zhu W, Liu K, Wang XD. Heterosis in yield, fiber quality, and photosynthesis of okra leaf oriented hybrid cotton (Gossypium hirsutum L.). Euphytica. 2008;164(1):283–91. https://doi.org/10.1007/s10681-008-9732-3.
Article
CAS
Google Scholar