Ahmad M, Gull S. Susceptibility of armyworm Spodoptera litura (Lepidoptera: Noctuidae) to novel insecticides in Pakistan. Can Entomol. 2017;149(5):649–61. https://doi.org/10.4039/tce.2017.29.
Article
Google Scholar
Akula R, Ravishankar GA. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav. 2011;6(11):1720–31. https://doi.org/10.4161/psb.6.11.17613.
Alonso-Amelot ME, Oliveros-Bastidas A. Kinetics of the natural evolution of hydrogen cyanide in plants in neotropical Pteridium arachnoideum and its ecological significance. J Chem Ecol. 2005;31(2):315–31. https://doi.org/10.1007/s10886-005-1343-z.
Andersen MD, Busk PK, Svendsen I, Møller BL. Cytochromes p-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin. Cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes. J Biol Chem. 2000;275(3):1966–75. https://doi.org/10.1074/jbc.275.3.1966.
Asano Y, Tamura K, Doi N, et al. Screening for new hydroxynitrilases from plants. Biosci Biotechnol Biochem. 2005;69(12):2349–57. https://doi.org/10.1271/bbb.69.2349.
Bak S, Olsen CE, Halkier BA, Møller BL. Transgenic tobacco and arabidopsis plants expressing the two multifunctional Sorghum cytochrome p450 enzymes, cyp79a1 and cyp71e1, are cyanogenic and accumulate metabolites derived from intermediates in dhurrin biosynthesis. Plant Physiol. 2000;123(4):1437–48. https://doi.org/10.1104/pp.123.4.1437.
Bak S, Paquette SM, Morant M, et al. Cyanogenic glycosides: a case study for evolution and application of cytochromes p450. Phytochem Rev. 2006;5(2–3):309–29. https://doi.org/10.1007/s11101-006-9033-1.
Ballhorn DJ, Kautz S, Lieberel R. Comparing responses of generalist and specialist herbivores to various cyanogenic plant features. Entomologia Experimentalis et Applicata. 2010;134(3):245–59. https://doi.org/10.1111/j.1570-7458.2009.00961.x.
Bartwal A, Mall R, Lohani P, et al. Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. J Plant Growth Regul. 2013;32(1):216–32. https://doi.org/10.1007/s00344-012-9272-x.
Becker A. Virus-induced gene silencing: methods and protocols. Totowa: Humana Press; 2013. https://doi.org/10.1007/978-1-62703-278-0.
Blomstedt CK, O'Donnell NH, Bjarnholt N, et al. Metabolic consequences of knocking out UGT85B1, the gene encoding the glucosyltransferase required for synthesis of dhurrin in Sorghum bicolor (L. Moench). Plant Cell Physiol. 2016;57(2):373–86. https://doi.org/10.1093/pcp/pcv153.
Bokanga M, Ekanayake IJ, Dixon AGO, Porto MCM. Genotype-environment interactions for cyanogenic potential in cassava. Acta Hortic. 1994;375:131–40. https://doi.org/10.17660/actahortic.1994.375.11.
Bragard C, Dehnen-Schmutz K, Di Serio F, et al. Pest categorisation of Spodoptera litura. EFSA J. 2019;17(7). https://doi.org/10.2903/j.efsa.2019.5765.
Bühler H, Effenberger F, Förster S, et al. Substrate specificity of mutants of the hydroxynitrile lyase from Manihot esculenta. Chembiochem. 2003;4(2–3):211–6. https://doi.org/10.1002/cbic.200390033.
Cheng T, Wu J, Wu Y, et al. Genomic adaptation to polyphagy and insecticides in a major east Asian noctuid pest. Nat Ecol Evol. 2017;1(11):1747–56. https://doi.org/10.1038/s41559-017-0314-4.
Cheng SH, Yan GH, Wu J, Sun WR. Cloning, expression and preliminary application of a alpha-hydroxynitrile lyase from cassave. Sheng Wu Gong Cheng Xue Bao. 2001;17(1):78–83. (in Chinese). https://www.ncbi.nlm.nih.gov/pubmed/11330194.
Christensen AH, Sharrock RA, Quail RH. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol. 1992;18(4):675–89. https://doi.org/10.1007/bf00020010.
Chueskul S, Chulavatnatol M. Properties of alpha-hydroxynitrile lyase from the petiole of cassava (Manihot esculenta Crantz). Arch Biochem Biophys. 1996;334(2):401–5. https://doi.org/10.1006/abbi.1996.0471.
Cicek M, Esen A. Structure and expression of a dhurrinase (beta-glucosidase) from sorghum. Plant Physiol. 1998;116(4):1469–78. https://doi.org/10.1104/pp.116.4.1469.
Cressey P, Reeve J. Metabolism of cyanogenic glycosides: a review. Food Chem Toxicol. 2019;125:225–32. https://doi.org/10.1016/j.fct.2019.01.002.
Dadashipour M, Asano Y. Hydroxynitrile lyases: insights into biochemistry, discovery, and engineering. ACS Catal. 2011;1(9):1121–49. https://doi.org/10.1021/cs200325q.
Dadashipour, Fukuta Y, Asano Y. Comparative expression of wild-type and highly soluble mutant his103leu of hydroxynitrile lyase from Manihot esculenta in prokaryotic and eukaryotic expression systems. Protein Expr Purif. 2011;77(1):92–7. https://doi.org/10.1016/j.pep.2010.12.010.
Esen A. ß-glucosidases. Washington, D.C.: American Chemical Society; 1993. https://doi.org/10.1021/bk-1993-0533.
Fand BB, Sul NT, Bal SK, Minhas PS. Temperature impacts the development and survival of common cutworm (Spodoptera litura): simulation and visualization of potential population growth in India under warmer temperatures through life cycle modelling and spatial mapping. PLoS One. 2015;10(4):e0124682. https://doi.org/10.1371/journal.pone.0124682.
Feigl F, Anger V. Replacement of benzidine by copper ethylacetoacetate and tetra base as spot-test reagent for hydrogen cyanide and cyanogen. Analyst. 1966;91(1081):282–4. https://doi.org/10.1039/an9669100282.
Article
CAS
PubMed
Google Scholar
Forslund K, Morant M, Jørgensen B, et al. Biosynthesis of the nitrile glucosides rhodiocyanoside a and d and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus. Plant Physiol. 2004;135(1):71–84. https://doi.org/10.1104/pp.103.038059.
Franks TK, Powell KS, Choimes S, et al. Consequences of transferring three sorghum genes for secondary metabolite (cyanogenic glucoside) biosynthesis to grapevine hairy roots. Transgenic Res. 2006;15(2):181–95. https://doi.org/10.1007/s11248-005-3737-7.
Gao X, Britt RC Jr, Shan L, He P. Agrobacterium-mediated virus-induced gene silencing assay in cotton. J Vis Exp. 2011;(54):e2938. https://doi.org/10.3791/2938.
Gleadow RM, Møller BL. Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Annu Rev Plant Biol. 2014;65:155–85. https://doi.org/10.1146/annurev-arplant-050213-040027.
Gleadow RM, Foley WJ, Woodrow IE. Enhanced CO2 alters the relationship between photosynthesis and defence in cyanogenic Eucalyptus cladocalyx F. Muell. Plant Cell Environ. 1998;21(1):12–22. https://doi.org/10.1046/j.1365-3040.1998.00258.x.
Gleadow RM, Woodrow IE. Mini-review: constraints on effectiveness of cyanogenic glycosides in herbivore defense. J Chem Ecol. 2002;28(7):1301–13. https://doi.org/10.1023/A:1016298100201.
Hay-Roe MM, Meagher RL, Nagoshi RN. Effects of cyanogenic plants on fitness in two host strains of the fall armyworm (Spodoptera frugiperda). J Chem Ecol. 2011;37(12):1314–22. https://doi.org/10.1007/s10886-011-0049-7.
Healey A, Furtado A, Cooper T, Henry RJ. Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods. 2014;10:21. https://doi.org/10.1186/1746-4811-10-21.
Howe GA, Jander G. Plant immunity to insect herbivores. Annu Rev Plant Biol. 2008;59:41–66. https://doi.org/10.1146/annurev.arplant.59.032607.092825.
Article
CAS
PubMed
Google Scholar
Jørgensen K, Bak S, Busk PK, et al. Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology. Plant Physiol. 2005;139(1):363–74. https://doi.org/10.1104/pp.105.065904.
Jørgensen K, Morant AV, Morant M, et al. Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of cyp71e7, the oxime-metabolizing cytochrome p450 enzyme. Plant Physiol. 2011;155(1):282–92. https://doi.org/10.1104/pp.110.164053.
Kassim MA, Rumbold K. HCN production and hydroxynitrile lyase: a natural activity in plants and a renewed biotechnological interest. Biotechnol Lett. 2014;36(2):223–8. https://doi.org/10.1007/s10529-013-1353-9.
Article
CAS
PubMed
Google Scholar
Kesselmeier J, Urban B. Subcellular localization of saponins in green and etiolated leaves and green protoplasts of oat (Avena sativa L.). Protoplasma. 1983;114(1–2):133–40. https://doi.org/10.1007/BF01279877.
Article
CAS
Google Scholar
Krothapalli K, Buescher EM, Li X, et al. Forward genetics by genome sequencing reveals that rapid cyanide release deters insect herbivory of Sorghum bicolor. Genetics. 2013;195(2):309–18. https://doi.org/10.1534/genetics.113.149567.
Lai D, Pičmanová M, Hachem MA, et al. Lotus japonicus flowers are defended by a cyanogenic beta-glucosidase with highly restricted expression to essential reproductive organs. Plant Mol Biol. 2015;89(1–2):21–34. https://doi.org/10.1007/s11103-015-0348-4.
Lauble H, Miehlich B, Förster S, et al. Mechanistic aspects of cyanogenesis from active-site mutant ser80ala of hydroxynitrile lyase from Manihot esculenta in complex with acetone cyanohydrin. Protein Sci. 2001;10(5):1015–22. https://doi.org/10.1110/ps.01301.
Lauble H, Miehlich B, Förster S, et al. Structure determinants of substrate specificity of hydroxynitrile lyase from Manihot esculenta. Protein Sci. 2002;11(1):65–71. https://doi.org/10.1110/ps.33702.
Li H, Li K, Guo Y, et al. A transient transformation system for gene characterization in upland cotton (Gossypium hirsutum). Plant Methods. 2018;14:50. https://doi.org/10.1186/s13007-018-0319-2.
Machingura M, Salomon E, Jez JM, Ebbs SD. The beta-cyanoalanine synthase pathway: beyond cyanide detoxification. Plant Cell Environ. 2016;39(10):2329–41. https://doi.org/10.1111/pce.12755.
Mahajan C, Patel K, Khan BM, Rawal SS. In silico ligand binding studies of cyanogenic beta-glucosidase, dhurrinase-2 from Sorghum bicolor. J Mol Model. 2015;21(7):184. https://doi.org/10.1007/s00894-015-2730-1.
Matsuoka M, Kyozuka J, Shimamoto K, Kano-Murakami Y. The promoters of two carboxylases in a C4 plant (maize) direct cell-specific, light-regulated expression in a C3 plant (rice). Plant J. 1994;6(3):311–9. https://doi.org/10.1046/j.1365-313x.1994.06030311.x.
Miller JM, Conn EE. Metabolism of hydrogen cyanide by higher plants. Plant Physiol. 1980;65(6):1199–202. https://doi.org/10.1104/pp.65.6.1199.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mizutani M, Saino H, Mizutani M, et al. Vicianin hydrolase is a novel cyanogenic beta-glycosidase specific to beta-vicianoside (6-o-alpha-l-arabinopyranosyl-beta-d-glucopyranoside) in seeds of Vicia angustifolia. Plant Cell Physiol. 2007;48(7):938–47. https://doi.org/10.1093/pcp/pcm065.
Morant AV, Jørgensen K, Jørgensen C, et al. Beta-glucosidases as detonators of plant chemical defense. Phytochemistry. 2008;69(9):1795–813. https://doi.org/10.1016/j.phytochem.2008.03.006.
Morant M, Bak S, Møller BL, et al. Plant cytochromes p450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol. 2003;14(2):151–62. https://doi.org/10.1016/s0958-1669(03)00024-7.
Morant VA, Jørgensen K, Jørgensen B, et al. Lessons learned from metabolic engineering of cyanogenic glucosides. Metabolomics. 2007;3(3):383–98. https://doi.org/10.1007/s11306-007-0079-x.
Nakajima T. Roles of sulfur metabolism and rhodanese in detoxification and anti-oxidative stress functions in the liver: responses to radiation exposure. Med Sci Monit. 2015;21:1721–5. https://doi.org/10.12659/msm.893234.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nielsen LJ, Stuart P, Pičmanová M, et al. Dhurrin metabolism in the developing grain of Sorghum bicolor (L.) Moench investigated by metabolite profiling and novel clustering analyses of time-resolved transcriptomic data. BMC Genomics. 2016;17(1):1021. https://doi.org/10.1186/s12864-016-3360-4.
Pang J, Zhu Y, Li Q, et al. Development of agrobacterium-mediated virus-induced gene silencing and performance evaluation of four marker genes in Gossypium barbadense. PLoS One. 2013;8(9):e73211. https://doi.org/10.1371/journal.pone.0073211.
Pant SR, McNeece BT, Sharma K, et al. The heterologous expression of a Glycine max homolog of nonexpressor of pr1 (npr1) and α-hydroxynitrile glucosidase suppresses parasitism by the root pathogen Meloidogyne incognita in Gossypium hirsutum. J Plant Interact. 2016;11(1):41–52. https://doi.org/10.1080/17429145.2016.1163423.
Panter KE. Chapter 64 - cyanogenic glycoside–containing plants. In: Gupta RC, editor. Veterinary toxicology. 3rd ed. Amsterdam: Academic Press; 2018. p. 935–40. https://doi.org/10.1016/B978-0-12-811410-0.00064-7.
Pauli S, Rothnie HM, Chen G, et al. The cauliflower mosaic virus 35S promoter extends into the transcribed region. J Virol. 2004;78(22):12120–8. https://doi.org/10.1128/jvi.78.22.12120-12128.2004.
Pičmanová M, Neilson EH, Motawia MS, et al. A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. Biochem J. 2015;469(3):375–89. https://doi.org/10.1042/bj20150390.
Poulton JE, Li CP. Tissue level compartmentation of (r)-amygdalin and amygdalin hydrolase prevents large-scale cyanogenesis in undamaged Prunus seeds. Plant Physiol. 1994;104(1):29–35. https://doi.org/10.1104/pp.104.1.29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Radin JW. Cyanogenesis in green tissues of cotton plants. Crop Sci. 1972;12(5):609–11. https://doi.org/10.2135/cropsci1972.0011183x001200050017x.
Rosenthal GA, Berenbaum MR. Herbivores. Their interactions with secondary plant metabolites, the chemical participants, vol. 1. 2nd ed. In: Rosenthal GA, Berenbaum MR, editors. The chemical participants. Hoboken: Wiley; 1992. https://doi.org/10.1111/j.1365-3032.1992.tb01027.x.
Samac DA, Tesfaye M, Dornbusch M, et al. A comparison of constitutive promoters for expression of transgenes in alfalfa (Medicago sativa). Transgenic Res. 2004;13(4):349–61. https://doi.org/10.1023/B:TRAG.0000040022.84253.12.
Saunders JA, Conn EE. Presence of the cyanogenic glucoside dhurrin in isolated vacuoles from Sorghum. Plant Physiol. 1978;61(2):154–7. https://doi.org/10.1104/pp.61.2.154.
Schaller A. Induced plant resistance to herbivory. Dordrecht: Springer Netherlands; 2008. https://doi.org/10.1007/978-1-4020-8182-8.
Schmidt FB, Cho SK, Olsen CE, et al. Diurnal regulation of cyanogenic glucoside biosynthesis and endogenous turnover in cassava. Plant Direct. 2018;2(2):e00038. https://doi.org/10.1002/pld3.38.
Semba H, Dobashi Y, Matsui T. Expression of hydroxynitrile lyase from Manihot esculenta in yeast and its application in (s)-mandelonitrile production using an immobilized enzyme reactor. Biosci Biotechnol Biochem. 2008;72(6):1457–63. https://doi.org/10.1271/bbb.70765.
Semba H, Ichige E, Imanaka T, et al. Efficient production of active form recombinant cassava hydroxynitrile lyase using Escherichia coli in low-temperature culture. Methods Mol Biol. 2010;643:133–44. https://doi.org/10.1007/978-1-60761-723-5_10.
Senthil-Kumar M, Mysore KS. Tobacco rattle virus-based virus-induced gene silencing in Nicotiana benthamiana. Nat Protoc. 2014;9(7):1549–62. https://doi.org/10.1038/nprot.2014.092.
Article
CAS
PubMed
Google Scholar
Sørensen M, Neilson EHJ, Møller BL. Oximes: unrecognized chameleons in general and specialized plant metabolism. Mol Plant. 2018;11(1):95–117. https://doi.org/10.1016/j.molp.2017.12.014.
Steiner A-M, Busching C, Vogel H, Wittstock U. Molecular identification and characterization of rhodaneses from the insect herbivore Pieris rapae. Sci Rep. 2018;8(1):10819. https://doi.org/10.1038/s41598-018-29148-5.
Sun Z, Zhang K, Chen C, et al. Biosynthesis and regulation of cyanogenic glycoside production in forage plants. Appl Microbiol Biotechnol. 2018;102(1):9–16. https://doi.org/10.1007/s00253-017-8559-z.
Takos AM, Knudsen C, Lai D, et al. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway. Plant J. 2011;68(2):273–86. https://doi.org/10.1111/j.1365-313x.2011.04685.x.
Tattersall DB, Bak S, Jones PR, et al. Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science. 2001;293(5536):1826–8. https://doi.org/10.1126/science.1062249.
Thayer SS, Conn EE. Subcellular localization of dhurrin beta-glucosidase and hydroxynitrile lyase in the mesophyll cells of sorghum leaf blades. Plant Physiol. 1981;67(4):617–22. https://doi.org/10.1104/pp.67.4.617.
Ting IP, Zschoche WC. Asparagine biosynthesis by cotton roots. Carbon dioxide fixation and cyanide incorporation. Plant Physiol. 1970;45(4):429–34. https://doi.org/10.1104/pp.45.4.429.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verdoucq L, Czjzek M, Moriniere J, et al. Mutational and structural analysis of aglycone specificity in maize and sorghum beta-glucosidases. J Biol Chem. 2003;278(27):25055–62. https://doi.org/10.1074/jbc.m301978200.
Verdoucq L, Morinière J, Bevan D, et al. Structural determinants of substrate specificity in family 1 beta-glucosidases: novel insights from the crystal structure of sorghum dhurrinase-1, a plant beta-glucosidase with strict specificity, in complex with its natural substrate. J Biol Chem. 2004;279(30):31796–803. https://doi.org/10.1074/jbc.m402918200.
Vetter J. Plant cyanogenic glycosides. In: Carlini CR, Ligabue-Braun R, editors. Plant toxins. Dordrecht: Springer Netherlands; 2017. p. 287–317. https://doi.org/10.1007/978-94-007-6464-4_19.
Wajant H, Pfizenmaier K. Identification of potential active-site residues in the hydroxynitrile lyase from Manihot esculenta by site-directed mutagenesis. J Biol Chem. 1996;271(42):25830–4. https://doi.org/10.1074/jbc.271.42.25830.
Article
CAS
PubMed
Google Scholar
War AR, Paulraj MG, Ahmad T, et al. Mechanisms of plant defense against insect herbivores. Plant Signal Behav. 2012;7(10):1306–20. https://doi.org/10.4161/psb.21663.
Weeks JT, Anderson OD, Blechl AE. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol. 1993;102(4):1077–84. https://doi.org/10.1104/pp.102.4.1077.
Weigel D, Glazebrook J. Transformation of agrobacterium using the freeze-thaw method. In: Weigel D, Glazebrook J, editors. Cold Spring Harbor protocols (2006/01/01 ed., Vol. 2006). Cold Spring Harbor: Cold Spring Harbor Laboratory; 2006. https://doi.org/10.1101/pdb.prot4666.
Xu J, Zhang S. Ethylene biosynthesis and regulation in plants. In: Wen C-K, editor. Ethylene in plants. Dordrecht: Springer Netherlands; 2015. pp. 1–25. https://doi.org/10.1007/978-94-017-9484-8_1.
Xue M, Pang YH, Wang HT, et al. Effects of four host plants on biology and food utilization of the cutworm, Spodoptera litura. J Insect Sci. 2010;10(1):1–14. https://doi.org/10.1673/031.010.2201.
Yan G, Cheng S, Zhao G, et al. A single residual replacement improves the folding and stability of recombinant cassava hydroxynitrile lyase in E. coil. Biotechnol Lett. 2003;25(13):1041–7. https://doi.org/10.1023/A:1024182228057.
Zagrobelny M, Bak S, Rasmussen AV, et al. Cyanogenic glucosides and plant-insect interactions. Phytochemistry. 2004;65(3):293–306. https://doi.org/10.1016/j.phytochem.2003.10.016.