Ali I, Teng Z, Bai Y, et al. A high density SLAF-SNP genetic map and QTL detection for fibre quality traits in Gossypium hirsutum. BMC Genomics. 2018;19(1):879–96. https://doi.org/10.1186/s12864-018-5294-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Annunziata MG. The long and the short of it: GA 2-oxidaseA9 regulates plant height in wheat. Plant Physiol. 2018;177(1):3–4. https://doi.org/10.1104/pp.18.00235.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braun E-M, Tsvetkova N, Rotter B, et al. Gene expression profiling and fine mapping identifies a gibberellin 2-oxidase gene co-segregating with the dominant dwarfing gene ddw1 in rye (Secale cereale L.). Front Plant Sci. 2019;10:857–75. https://doi.org/10.3389/fpls.2019.00857.
Article
PubMed
PubMed Central
Google Scholar
Cai C, Zhu G, Zhang T, et al. High-density 80 K SNP array is a powerful tool for genotyping G. hirsutum accessions and genome analysis. BMC Genomics. 2017;18(1):654–67. https://doi.org/10.1186/s12864-017-4062-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Hao R, He Y. TBtools, a toolkit for biologists integrating various HTS-data handling tools with a user-friendly interface. bioRxiv. 2018. https://doi.org/10.1101/289660.
Chen Y, Fan X, Song W, et al. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol J. 2012;10(2):139–49. https://doi.org/10.1111/j.1467-7652.2011.00637.x.
Article
Google Scholar
Chen ZJ, Scheffler BE, Dennis E, et al. Toward sequencing cotton (Gossypium) genomes. Plant Physiol. 2007;145(4):1303–10. https://doi.org/10.1104/pp.107.107672.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deschamps S, Llaca V, May GD. Genotyping-by-sequencing in plants. Biology (Basel). 2012;1(3):460–83. https://doi.org/10.3390/biology1030460.
Article
Google Scholar
Diouf L, Magwanga RO, Gong W, et al. QTL mapping of fiber quality and yield-related traits in an intra-specific upland cotton using genotype by sequencing (GBS). Int J Mol Sci. 2018;19(2):441–64. https://doi.org/10.3390/ijms19020441.
Article
CAS
PubMed Central
Google Scholar
Gao P, Xia S, Zhao Z, et al. Exploring the suitable cultivation measures for mechanized harvesting of cotton in North Jiangxi. Cotton Sciences. 2016;38(1):42–4,60. https://doi.org/10.3969/j.issn.2095-3143.2016.01.09.
Ge R, Lan M, Shi Y, et al. Correlation and path coefficient analysis of main agronomic characters in BC4F3 and BC4F4 generations from Gossypium hirsutum L. × Gossypium barbadense L. Chin Agric Sci Bull. 2012;28(3):127–30. https://doi.org/10.11924/j.issn.1000-6850.2011-2089.
Hegarty M, Yadav R, Lee M, et al. Genotyping by RAD sequencing enables mapping of fatty acid composition traits in perennial ryegrass (Lolium perenne (L.)). Plant Biotechnol J. 2013;11:572–81. https://doi.org/10.1111/pbi.12045.
Article
CAS
PubMed
Google Scholar
Hu W, Yang H, Yan Y, et al. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava. Sci Rep. 2016;6:22783–94. https://doi.org/10.1038/srep22783.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang C, Nie X, Shen C, et al. Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs. Plant Biotechnol J. 2017;15(11):1374–86. https://doi.org/10.1111/pbi.12722.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hulse-Kemp AM, Lemm J, Plieske J, et al. Development of a 63K SNP array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp. G3 (Bethesda). 2015;5(6):1187–209. https://doi.org/10.1534/g3.115.018416.
Article
Google Scholar
Hussain SS, Azhar FM, Mahmood I. Path coefficient and correlation analysis of some important plant traits of Gossypium hirsutum L. Pak J Biol Sci. 2000;3(9):1399–400. https://doi.org/10.3923/pjbs.2000.1399.1400.
Article
Google Scholar
Jamshed M, Jia F, Gong J, et al. Identification of stable quantitative trait loci (QTLs) for fiber quality traits across multiple environments in Gossypium hirsutum recombinant inbred line population. BMC Genomics. 2016;17(1):197–209. https://doi.org/10.1186/s12864-016-2560-2.
Jia X, Pang C, Wei H, et al. High-density linkage map construction and QTL analysis for earliness-related traits in Gossypium hirsutum L. BMC Genomics. 2016;17:909–22. https://doi.org/10.1186/s12864-016-3269-y.
Article
PubMed
PubMed Central
Google Scholar
Jiao Y, Wang Y, Xue D, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet. 2010;42(6):541–4. https://doi.org/10.1038/ng.591.
Article
CAS
PubMed
Google Scholar
Kundu A, Chakraborty A, Mandal NA, et al. A restriction-site-associated DNA (RAD) linkage map, comparative genomics and identification of QTL for histological fibre content coincident with those for retted bast fibre yield and its major components in jute (Corchorus olitorius L., Malvaceae s. l.). Mol Breed. 2015;35(1):19–35. https://doi.org/10.1007/s11032-015-0249-x.
Article
CAS
Google Scholar
Laranjeira S, Amorim-Silva V, Esteban A, et al. Arabidopsis squalene epoxidase 3 (SQE3) complements SQE1 and is important for embryo development and bulk squalene epoxidase activity. Mol Plant. 2015;8(7):1090–102. https://doi.org/10.1016/j.molp.2015.02.007.
Article
CAS
Google Scholar
Lei Y, Wei X, Liu Z. Present status and outlook of cotton industry development in China. Agric Outlook. 2014;10(9):43–7. https://doi.org/10.3969/j.issn.1673-3908.2014.09.008.
Article
Google Scholar
Li C, Dong Y, Zhao T, et al. Genome-wide SNP linkage mapping and QTL analysis for fiber quality and yield traits in the upland cotton recombinant inbred lines population. Front Plant Sci. 2016;7:1356–71. https://doi.org/10.3389/fpls.2016.01356.
Article
PubMed
PubMed Central
Google Scholar
Li C, Song L, Zhao H, et al. Quantitative trait loci mapping for plant architecture traits across two upland cotton populations using SSR markers. J Agric Sci. 2014;152(2):275–87. https://doi.org/10.1017/S0021859613000063.
Article
CAS
Google Scholar
Li C, Wang Q, Peng W, et al. Relationship between lint yield and main agronomic characters in F2 generation of upland cotton. Guizhou Agric Sci. 2010;38(9):14–6,21. https://doi.org/10.3969/j.issn.1001-3601.2010.09.005.
Article
Google Scholar
Li C, Wang Y, Ai N, et al. A genome-wide association study of early-maturation traits in upland cotton based on the CottonSNP80K array. J Integr Plant Biol. 2018a;60(10):970–85. https://doi.org/10.1111/jipb.12673.
Article
CAS
PubMed
Google Scholar
Li W, Ge F, Qiang Z, et al. Maize ZmRPH1 encodes a microtubule-associated protein that controls plant and ear height. Plant Biotechnol J. 2019:13292. https://doi.org/10.1111/pbi.13292.
Li Z, Zhang X, Zhao Y, et al. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height. Plant Biotechnol J. 2018b;16(1):86–99. https://doi.org/10.1111/pbi.12751.
Article
CAS
PubMed
Google Scholar
Liu R, Gong J, Xiao X, et al. GWAS analysis and QTL identification of fiber quality traits and yield components in upland cotton using enriched high-density SNP markers. Front Plant Sci. 2018;9:1067–71. https://doi.org/10.3389/fpls.2018.01067.
Article
PubMed
PubMed Central
Google Scholar
Lozano-Sotomayor P, Chavez Montes RA, Silvestre-Vano M, et al. Altered expression of the bZIP transcription factor DRINK ME affects growth and reproductive development in Arabidopsis thaliana. Plant J. 2016;88(3):437–51. https://doi.org/10.1111/tpj.13264.
Article
CAS
PubMed
Google Scholar
Lu X, Jia X, Niu J. The present situation and prospects of cotton industry development in China. Sci Agric Sin. 2018;51(1):26–36. https://doi.org/10.3864/j.issn.0578-1752.2018.01.003.
Article
Google Scholar
Ma J, Pei W, Ma Q, et al. QTL analysis and candidate gene identification for plant height in cotton based on an interspecific backcross inbred line population of Gossypium hirsutum × Gossypium barbadense. Theor Appl Genet. 2019a;132(9):2663–76. https://doi.org/10.1007/s00122-019-03380-7.
Article
CAS
Google Scholar
Ma J, Tu Y, Zhu J, et al. Flag leaf size and posture of bread wheat: genetic dissection, QTL validation and their relationships with yield-related traits. Theor Appl Genet. 2019b:03458. https://doi.org/10.1007/s00122-019-03458-2.
Article
Google Scholar
Mao S, Li Y, Zhi X, et al. Technology advancement of China's cotton cultivation. Agric Outlook. 2016;12(1):57–64. https://doi.org/10.3969/j.issn.1673-3908.2016.01.013.
Article
Google Scholar
Mei Y, Yu J, Xue A, et al. Association mapping of genetic network for plant morphological traits in cotton. J Zhejiang Univ. 2016;42(2):127–36. https://doi.org/10.3785/j.issn.1008-9209.2016.01.191.
Article
Google Scholar
Meng L, Li H, Zhang L, et al. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 2015;3:269–83. https://doi.org/10.1016/j.cj.2015.01.001.
Article
Google Scholar
Miura K, Ikeda M, Matsubara A, et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet. 2010;42:545–9. https://doi.org/10.1038/ng.592.
Article
CAS
Google Scholar
Monna L, Kitazawa N, Yoshino R, et al. Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res. 2002;9(1):11–7. https://doi.org/10.1093/dnares/9.1.11.
Article
CAS
PubMed
Google Scholar
Palanga KK, Jamshed M, Rashid HO, et al. Quantitative trait locus mapping for Werticillium wilt resistance in an upland cotton recombinant inbred line using SNP-based high density genetic map. Fron Plant Sci. 2017;8:382–94. https://doi.org/10.3389/fpls.2017.00382.
Paterson AH, Wendel JF, Gundlach H, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature. 2012;492(7429):423–7. https://doi.org/10.1038/nature11798.
Article
CAS
PubMed
Google Scholar
Qi H, Wang N, Qiao W, et al. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of three plant morphological traits in upland cotton (Gossypium hirsutum L.). Euphytica. 2017;213(4):83–99. https://doi.org/10.1007/s10681-017-1867-7.
Article
CAS
Google Scholar
Said J, Lin Z, Zhang X, et al. A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC genomics. 2013;14(1):776. https://doi.org/10.1186/1471-2164-14-776.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakamoto T, Miura K, Itoh H, et al. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol. 2004;134(4):1642–53. https://doi.org/10.1104/pp.103.033696.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shang L, Liu F, Wang Y, et al. Dynamic QTL mapping for plant height in upland cotton (Gossypium hirsutum). Plant Breed. 2016;134(6):703–12. https://doi.org/10.1111/pbr.12316.
Article
CAS
Google Scholar
Shi LY, Zhou J. The development status and prospect of Xinjiang machine picked cotton. Prog Text Sci Technol. 2014;3:1–3. https://doi.org/10.19507/j.cnki.1673-0356.2014.03.001.
Article
Google Scholar
Song X, Zhang T. Quantitative trait loci controlling plant architectural traits in cotton. Plant Sci. 2009;177(4):317–23. https://doi.org/10.1016/j.plantsci.2009.05.015.
Article
CAS
Google Scholar
Su J, Li L, Zhang C, et al. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton. Theor Appl Genet. 2018;131:1299–314. https://doi.org/10.1007/s00122-018-3079-5.
Article
CAS
PubMed
Google Scholar
Sun FD, Zhang JH, Wang SF, et al. QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Mol Breed. 2012;30(1):569–82. https://doi.org/10.1007/s11032-011-9645-z.
Article
Google Scholar
Tan Z, Zhang Z, Sun X, et al. Genetic map construction and fiber quality QTL mapping using the cottonSNP80K array in upland cotton. Front Plant Sci. 2018;9:225–35. https://doi.org/10.3389/fpls.2018.00225.
Article
PubMed
PubMed Central
Google Scholar
Tang FY, Wang XF, Mo WC, et al. Relation analysis of several agronomic traits and single plant lint yield in upland cotton with high quality. J Anhui Agric Sci. 2009;10(2):90–2. https://doi.org/10.16175/j.cnki.1009-4229.2009.02.021.
Article
Google Scholar
Voorrips R. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered. 2002;93(1):77–8. https://doi.org/10.1093/jhered/93.1.77.
Article
CAS
Google Scholar
Wang B, Smith SM, Li J. Genetic regulation of shoot architecture. Annu Rev Plant Biol. 2018;69(1):437–68. https://doi.org/10.1146/annurev-arplant-042817-040422.
Article
CAS
PubMed
Google Scholar
Wang BH, Yao-Ting WU, Huang NT, et al. QTL mapping for plant architecture traits in upland cotton using RILs and SSR markers. Acta Genet Sin. 2006;33(2):161–70. https://doi.org/10.1016/S0379-4172(06)60035-8.
Article
CAS
PubMed
Google Scholar
Wang J, Wang Z, Du X, et al. A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq. PLoS One. 2017;12(6):e0179717. https://doi.org/10.1371/journal.pone.0179717.
Article
Google Scholar
Wang S, Basten C, Zeng Z. Windows QTL Cartographer 2.5. Raleigh, NC: Department of Statistics, North Carolina State University; 2007. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm.
Watson MB, Emory KK, Piatak RM, et al. Arginine decarboxylase (polyamine synthesis) mutants of Arabidopsis thaliana exhibit altered root growth. Plant J. 1998;13(2):231–9. https://doi.org/10.1046/j.1365-313X.1998.00027.x.
Article
CAS
Google Scholar
Wu Y, Fu Y, Zhao S, et al. CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Plant Biotechnol J. 2016;14(1):377–86. https://doi.org/10.1111/pbi.12391.
Article
CAS
PubMed
Google Scholar
Yan Q, Wu F, Ma T, et al. Comprehensive analysis of bZIP transcription factors uncovers their rolesduring dimorphic floret differentiation andstress response in Cleistogenes songorica. BMC Genomics. 2019;20(1):760–76. https://doi.org/10.1186/s12864-019-6092-4.
Yang H, Li C, Lam HM, et al. Sequencing consolidates molecular markers with plant breeding practice. Theor Appl Genet. 2015;128(5):779–95. https://doi.org/10.1007/s00122-015-2499-8.
Article
CAS
PubMed
Google Scholar
Zhang K, Kuraparthy V, Fang H, et al. High-density linkage map construction and QTL analyses for fiber quality, yield and morphological traits using CottonSNP63K array in upland cotton (Gossypium hirsutum L.). BMC Genomics. 2019b;20(1):889–914. https://doi.org/10.1186/s12864-019-6214-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang PT, Zhu XF, Guo WZ, et al. Inheritance and QTLs tagging for ideal plant architecture of Simian 3 using molecular markers. Cotton Sci. 2006;18(1):13–8. https://doi.org/10.3969/j.issn.1002-7807.2006.01.003.
Zhang T, Hu Y, Jiang W, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015;33(5):531–7. https://doi.org/10.1038/nbt.3207.
Article
CAS
PubMed
Google Scholar
Zhang Z, Liu A, Huang Z, et al. Quantitative trait locus mapping for plant height and branch number in an upland cotton recombinant inbred line with an SNP-based high-density genetic map. Euphytica. 2019a;215:110–21. https://doi.org/10.1007/s10681-019-2428-z.
Article
CAS
Google Scholar
Zhang Z, Shang H, Shi Y, et al. Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to quantitative trait loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum.). BMC Plant Biol. 2016;16:79–97. https://doi.org/10.1186/s12870-016-0741-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou X, Gong J, Duan L, et al. High-density genetic map construction and QTL mapping for fiber strength on C24 across multiple environments in a CCRI70 recombinant inbred lines population. Euphytica. 2018;214(6):102–15. https://doi.org/10.1007/s10681-018-2177-4.
Article
CAS
Google Scholar