Bailey L, Boden M, Buske FA, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37(suppl. 2):W202–8. https://doi.org/10.1093/nar/gkp335.
Article
CAS
PubMed
PubMed Central
Google Scholar
Byrne ME. A role for the ribosome in development. Trends Plant Sci. 2009;14(9):512–9. https://doi.org/10.1016/j.tplants.2009.06.009.
Article
CAS
PubMed
Google Scholar
Cai X, Magwanga RO, Xu Y, et al. Comparative transcriptome, physiological and biochemical analyses reveal response mechanism mediated by CBF4 and ICE2 in enhancing cold stress tolerance in Gossypium thurberi. AoB Plants. 2019;11(6):1–17. https://doi.org/10.1093/aobpla/plz045.
Article
CAS
Google Scholar
Campbell BT, Saha S, Percy R, et al. Status of the global cotton germplasm resources. Crop Sci. 2010;50(4):1161–79. https://doi.org/10.2135/cropsci2009.09.0551.
Article
Google Scholar
Chaillou T. Ribosome specialization and its potential role in the control of protein translation and skeletal muscle size. J Appl Physiol. 2019;127(2):599–607. https://doi.org/10.1152/japplphysiol.00946.2018.
Article
CAS
PubMed
Google Scholar
Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202. https://doi.org/10.1016/j.molp.2020.06.009.
Article
CAS
PubMed
Google Scholar
Corbin C, Lafontaine F, Sepúlveda LJ, et al. Virus-induced gene silencing in Rauwolfia species. Protoplasma. 2017;254(4):1813–8. https://doi.org/10.1007/s00709-017-1079-y.
Article
CAS
PubMed
Google Scholar
Des Roches S, Post DM, Turley NE, et al. The ecological importance of intraspecific variation. Nat Ecol Evol. 2018;2(1):57–64. https://doi.org/10.1038/s41559-017-0402-5.
Article
PubMed
Google Scholar
Dupadahalli K. A modified freeze—thaw method for efficient transformation of Agrobacterium tumefaciens. Curr Sci. 2020;93(6):3–6.
Google Scholar
Fathi A, Tari DB. Effect of drought stress and its mechanism in plants. Int J Life Sci. 2016;10(1):1–6. https://doi.org/10.3126/ijls.v10i1.14509.
Article
Google Scholar
Haigler CH, Betancur L, StiffM R, et al. Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front Plant Sci. 2012;3(104):104. https://doi.org/10.3389/fpls.2012.00104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horiguchi G, Van Lijsebettens M, Candela H, et al. Ribosomes and translation in plant developmental control. Plant Sci. 2012;191–2:24–34. https://doi.org/10.1016/j.plantsci.2012.04.008.
Article
CAS
Google Scholar
Hortona P, Park KJ, Obayashi T, et al. Protein subcellular localization prediction with WoLF PSORT. In: Jiang T, Yang UC, Chen YP, Wong L, editors. Series on advances in bioinformatics and computational biology. Proceedings of the 4th Asia-Pacific Bioinformatics Conference, vol. 3. 2005. p. 39–48. https://doi.org/10.1142/9781860947292_0007.
Hu B, Jin J, Guo AY, et al. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015;31(8):1296–7. https://doi.org/10.1093/bioinformatics/btu817.
Article
PubMed
Google Scholar
Kim KY, Park SW, Chung YS, et al. Molecular cloning of low-temperature-inducible ribosomal proteins from soybean. J Exp Bot. 2004;55(399):1153–5. https://doi.org/10.1093/jxb/erh125.
Article
CAS
PubMed
Google Scholar
Kim CK, Oh JH, Na JK, et al. The genes associated with drought tolerance by multi-layer approach in potato. Plant Breed Biotechnol. 2019;7(4):405–14. https://doi.org/10.9787/PBB.2019.7.4.405.
Article
Google Scholar
Kirungu JN, Magwanga RO, Pu L, et al. Knockdown of Gh_A05G1554 (GhDHN_03) and Gh_D05G1729 (GhDHN_04) dehydrin genes, reveals their potential role in enhancing osmotic and salt tolerance in cotton. Genomics. 2020;112(2):1902–15. https://doi.org/10.1016/j.ygeno.2019.11.003.
Article
CAS
PubMed
Google Scholar
Kyrpides NC, Woese CR, Ouzounis CA. KOW: a novel motif linking a bacterial transcription factor with ribosomal proteins. Trends Biochem Sci. 1996;21(11):425–6. https://doi.org/10.1016/S0968-0004(96)30036-4.
Article
CAS
PubMed
Google Scholar
Li S. Regulation of ribosomal proteins on viral infection. Cells. 2019;8(5):508. https://doi.org/10.3390/cells8050508.
Article
CAS
PubMed Central
Google Scholar
Liu XD, Xie L, Wei Y, et al. Abiotic stress resistance, a novel moonlighting function of ribosomal protein RPL44 in the halophilic fungus Aspergillus glaucus. Appl Environ Microbiol. 2014;80(14):4294–300. https://doi.org/10.1128/AEM.00292-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the \({2}^{-\Delta\Delta{\text{C}}_{\text {T}}}\) method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.
Article
CAS
Google Scholar
Lu P, Magwanga RO, Kirungu JN, et al. Overexpression of cotton a DTX/MATE gene enhances drought, salt, and cold stress tolerance in transgenic arabidopsis. Front Plant Sci. 2019;10(March):299. https://doi.org/10.3389/fpls.2019.00299.
Article
PubMed
PubMed Central
Google Scholar
Magwanga RO, Lu P, Kirungu JN, et al. GBS mapping and analysis of genes conserved between Gossypium tomentosum and Gossypium hirsutum cotton cultivars that respond to drought stress at the seedling stage of the BC2F2 generation. Int J Mol Sci. 2018a;19(6):1614. https://doi.org/10.3390/ijms19061614.
Article
CAS
PubMed Central
Google Scholar
Magwanga RO, Lu P, Kirungu JN, et al. Cotton late embryogenesis abundant (LEA2) genes promote root growth and confer drought stress tolerance in transgenic Arabidopsis thaliana. G3 Genes Genom Genet. 2018b;8(8):2781–803. https://doi.org/10.1534/g3.118.200423.
Article
CAS
Google Scholar
Magwanga RO, Lu P, Kirungu JN, et al. Identification of QTLs and candidate genes for physiological traits associated with drought tolerance in cotton. J Cotton Res. 2020;3(1):1–33. https://doi.org/10.1186/s42397-020-0043-0.
Article
CAS
Google Scholar
Mehla N, Sindhi V, Josula D, et al. An introduction to antioxidants and their roles in plant stress tolerance. In: Khan MIR, Khan NA, editors. Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Singapore: Springer. 2017; p. 1–23. https://doi.org/10.1007/978-981-10-5254-5_1.
Moin M, Bakshi A, Saha A, et al. Rice ribosomal protein large subunit genes and their spatio-temporal and stress regulation. Front Plant Sci. 2016;24(7):1–20. https://doi.org/10.3389/fpls.2016.01284.
Article
Google Scholar
Moin M, Bakshi A, Madhav MS, Kirti PB. Expression profiling of ribosomal protein gene family in dehydration stress responses and characterization of transgenic rice plants overexpressing RPL23A for water-use efficiency and tolerance to drought and salt stresses. Front Chem. 2017;5(11):1–16. https://doi.org/10.3389/fchem.2017.00097.
Article
CAS
Google Scholar
Mukhopadhyay P, Reddy MK, Singla-Pareek SL, et al. Transcriptional downregulation of rice rpL32 gene under abiotic stress is associated with removal of transcription factors within the promoter region. PLoS ONE. 2011;6(11): e28058. https://doi.org/10.1371/journal.pone.0028058.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oluoch G, Zheng J, Wang X, et al. QTL mapping for salt tolerance at seedling stage in the interspecific cross of Gossypium tomentosum with Gossypium hirsutum. Euphytica. 2016;209(1):223–35. https://doi.org/10.1007/s10681-016-1674-6.
Article
CAS
Google Scholar
Rogalski M, Schöttler MA, Thiele W, et al. Rpl33, a nonessential plastid-encoded ribosomal protein in tobacco, is required under cold stress conditions. Plant Cell. 2008;20(8):2221–37. https://doi.org/10.1105/tpc.108.060392.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogers GM, Poore MH, Paschal JC. Feeding cotton products to cattle. Vet Clin N Am Food Anim Pract. 2002;18(2):267–94. https://doi.org/10.1016/s0749-0720(02)00020-8.
Article
Google Scholar
Saha A, Das S, Moin M, et al. Genome-wide identification and comprehensive expression profiling of ribosomal protein small subunit (RPS) genes and their comparative analysis with the large subunit (RPL) genes in rice. Front Plant Sci. 2017;8:1553. https://doi.org/10.3389/fpls.2017.01553.
Article
Google Scholar
Semrad K, Schroeder R. A ribosomal function is necessary for efficient splicing of the T4 phage thymidylate synthase intron in vivo. Genes Dev. 1998;12(9):1327–37. https://doi.org/10.1101/gad.12.9.1327.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh V, Kendall RJ, Hake K, et al. Crude oil sorption by raw cotton. Ind Eng Chem Res. 2013;52(18):6277–81. https://doi.org/10.1021/ie4005942.
Article
CAS
Google Scholar
Song J, Wei X, Shao G, et al. The rice nuclear gene WLP1 encoding a chloroplast ribosome L13 protein is needed for chloroplast development in rice grown under low temperature conditions. Plant Mol Biol. 2014;84(3):301–14. https://doi.org/10.1007/s11103-013-0134-0.
Article
CAS
PubMed
Google Scholar
Sormani R, Masclaux-Daubresse C, Daniele-Vedele F, et al. Transcriptional regulation of ribosome components are determined by stress according to cellular compartments in Arabidopsis thaliana. PLoS ONE. 2011;6(12): e28070. https://doi.org/10.1371/journal.pone.0028070.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stone SL. The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Front Plant Sci. 2014;16(5):135. https://doi.org/10.3389/fpls.2014.00135.
Article
Google Scholar
Suzuki N, Rivero RM, Shulaev V, et al. Abiotic and biotic stress combinations. New Phytol. 2014;203(1):32–43. https://doi.org/10.1111/nph.12797.
Article
PubMed
Google Scholar
Tamura K, Stecher G, Peterson D, et al. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Bio Evol. 2013;30(12):2725–9.
Article
CAS
Google Scholar
Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using clustalW and clustalX. Curr Protoc Bioinform. 2002. https://doi.org/10.1002/0471250953.bi0203s00.
Article
Google Scholar
Tian T, Liu Y, Yan H, et al. AgriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017;45(W1):W122–9. https://doi.org/10.1093/nar/gkx382.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tiller N, Weingartner M, Thiele W, et al. The plastid-specific ribosomal proteins of Arabidopsis thaliana can be divided into non-essential proteins and genuine ribosomal proteins. Plant J. 2012;69(2):302–16. https://doi.org/10.1111/j.1365-313X.2011.04791.x.
Article
CAS
PubMed
Google Scholar
Vinet L, Zhedanov A. A “missing” family of classical orthogonal polynomials. J Phys A Math Theor. 2011;44(8):29–31. https://doi.org/10.1088/1751-8113/44/8/085201.
Article
Google Scholar
Wang L, He S, Dia S, et al. Industrial crops & products alien genomic introgressions enhanced fiber strength in upland cotton (Gossypium hirsutum L.). Ind Crops Prod. 2021;159:113028. https://doi.org/10.1016/j.indcrop.2020.113028.
Article
CAS
Google Scholar
Yang X, Kirungu JN, Magwanga RO, et al. Knockdown of GhIQD31 and GhIQD32 increases drought and salt stress sensitivity in Gossypium hirsutum. Plant Physiol Biochem. 2019;144:166–77. https://doi.org/10.1016/j.plaphy.2019.09.027.
Article
CAS
PubMed
Google Scholar
Zhao T, Xia H, Liu J, et al. The gene family of dehydration responsive element-binding transcription factors in grape (Vitis vinifera): Genome-wide identification and analysis, expression profiles, and involvement in abiotic stress resistance. Mol Biol Rep. 2014;41(3):1577–90. https://doi.org/10.1007/s11033-013-3004-6.
Article
CAS
PubMed
Google Scholar
Zou C, Sun K, Mackaluso JD, et al. Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2011;108(36):14992–7. https://doi.org/10.1073/pnas.1103202108.
Article
PubMed
PubMed Central
Google Scholar