Acharya B, Ingram TW, Oh Y, et al. Opportunities and challenges in studies of host-pathogen interactions and management of Verticillium dahliae in tomatoes. Plants. 2020;9(11):1622. https://doi.org/10.3390/plants9111622.
Article
PubMed Central
CAS
Google Scholar
Atallah ZK, Maruthachalam K, Toit L, et al. Population analyses of the vascular plant pathogen Verticillium dahliae detect recombination and transcontinental gene flow. Fungal Genet Biol. 2010;47(5):416–22. https://doi.org/10.1016/j.fgb.2010.02.003.
Article
PubMed
CAS
Google Scholar
Bui TT, Harting R, Braus-Stromeyer SA, et al. Verticillium dahliae transcription factors Som1 and Vta3 control microsclerotia formation and sequential steps of plant root penetration and colonisation to induce disease. New Phytol. 2019;221(4):2138–59. https://doi.org/10.1111/nph.15514.
Article
PubMed
CAS
Google Scholar
Cai Q, Qiao LL, Wang M, et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science. 2018;360(6393):1126–9. https://doi.org/10.1126/science.aar4142.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen JY, Xiao HL, Gui YJ, et al. Characterization of the Verticillium dahliae exoproteome involves in pathogenicity from cotton-containing medium. Front Microbiol. 2016;7:1709. https://doi.org/10.3389/fmicb.2016.01709.
Article
PubMed
PubMed Central
Google Scholar
Chen JY, Liu C, Gui YJ, et al. Comparative genomics reveals cotton-specific virulence factors in flexible genomic regions in Verticillium dahliae and evidence of horizontal gene transfer from Fusarium. New Phytol. 2018;217(2):756–70. https://doi.org/10.1111/nph.14861.
Article
PubMed
CAS
Google Scholar
Cheng XX, Zhao LH, Klosterman SJ, et al. The endochitinase VDECH from Verticillium dahliae inhibits spore germination and activates plant defense responses. Plant Sci. 2017;259:12–23. https://doi.org/10.1016/j.plantsci.2017.03.002.
Article
PubMed
CAS
Google Scholar
Daboussi MJ, Capy P. Transposable elements in filamentous fungi. Annu Rev Microbiol. 2003;57:275–99.
Article
CAS
Google Scholar
De Jonge R, Van Esse HP, Kombrink A, et al. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science. 2010;329(5994):953–5. https://doi.org/10.1126/science.1190791.
Article
PubMed
CAS
Google Scholar
De Jonge R, Bolton MD, Kombrink A, et al. Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Res. 2013;23(8):1271–82. https://doi.org/10.1101/gr.152660.112.
Article
PubMed
PubMed Central
CAS
Google Scholar
De Sain M, Rep M. The role of pathogen-secreted proteins in fungal vascular wilt diseases. Int J Mol Sci. 2015;16(10):23970–93. https://doi.org/10.3390/ijms161023970.
Article
PubMed
PubMed Central
CAS
Google Scholar
Deng S, Wang CY, Zhang X, et al. VdNUC-2, the key regulator of phosphate responsive signaling pathway, is required for Verticillium dahliae infection. PLoS ONE. 2015;10(12):e0145190. https://doi.org/10.1371/journal.pone.0145190.
Article
PubMed
PubMed Central
CAS
Google Scholar
Depotter JRL, Shi-Kunne X, Missonnier H, et al. Dynamic virulence-related regions of the plant pathogenic fungus Verticillium dahliae display enhanced sequence conservation. Mol Ecol. 2019;28(15):3482–95. https://doi.org/10.1111/mec.15168.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ding P, Redkar A. Pathogens suppress host transcription factors for rampant proliferation. Trends Plant Sci. 2018;23(11):950–3. https://doi.org/10.1016/j.tplants.2018.08.010.
Article
PubMed
CAS
Google Scholar
Du X, Wang S, Gao F, et al. Expression of pathogenesis-related genes in cotton roots in response to Verticillium dahliae PAMP molecules. Sci China Life Sci. 2017;60(8):852–60.
Article
CAS
Google Scholar
El Hadrami A, Islam MR, Adam LR, et al. A cupin domain-containing protein with a quercetinase activity (VdQase) regulates Verticillium dahliae’s pathogenicity and contributes to counteracting host defenses. Front Plant Sci. 2015;6:440. https://doi.org/10.3389/fpls.2015.00440.
Article
PubMed
PubMed Central
Google Scholar
Eynck C, Koopmann B, Grunewaldt-Stoecker G, et al. Differential interactions of Verticillium longisporum and V. dahliae with Brassica napus detected with molecular and histological techniques. Eur J Plant Pathol. 2007;118(3):259–74.
Article
Google Scholar
Fan R, Klosterman SJ, Wang C, et al. Vayg1 is required for microsclerotium formation and melanin production in Verticillium dahliae. Fungal Genet Biol. 2017;98:1–11. https://doi.org/10.1016/j.fgb.2016.11.003.
Article
PubMed
CAS
Google Scholar
Fang Y, Xiong D, Tian L, et al. Functional characterization of two bZIP transcription factors in Verticillium dahliae. Gene. 2017;626:386–94. https://doi.org/10.1016/j.gene.2017.05.061.
Article
PubMed
CAS
Google Scholar
Fang Y, Klosterman SJ, Tian C, et al. Insights into VdCmr1-mediated protection against high temperature stress and UV irradiation in Verticillium dahliae. Environ Microbiol. 2019;21(8):2977–96. https://doi.org/10.1111/1462-2920.14695.
Article
PubMed
CAS
Google Scholar
Feng Z, Tian J, Han L, et al. The Myosin5-mediated actomyosin motility system is required for Verticillium pathogenesis of cotton. Environ Microbiol. 2018;20(4):1607–21. https://doi.org/10.1111/1462-2920.14101.
Article
PubMed
CAS
Google Scholar
Fradin EF, Thomma BP. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol. 2006;7(2):71–86. https://doi.org/10.1111/j.1364-3703.2006.00323.x.
Article
PubMed
CAS
Google Scholar
Gao F, Zhou BJ, Li GY, et al. A glutamic acid-rich protein identified in Verticillium dahliae from an insertional mutagenesis affects microsclerotial formation and pathogenicity. PLoS ONE. 2010;5(12):e15319. https://doi.org/10.1371/journal.pone.0015319.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gao F, Zhang BS, Zhao JH, et al. Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens. Nat Plants. 2019;5(11):1167–76.
Article
CAS
Google Scholar
Gold SE, Paz Z, García-Pedrajas MD, et al. Rapid deletion production in fungi via Agrobacterium mediated transformation of OSCAR deletion constructs. J vis Exp. 2017;124:e55239. https://doi.org/10.3791/55239.
Article
CAS
Google Scholar
Gómez-Gómez L, Boller T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell. 2000;5(6):1003–11. https://doi.org/10.1016/S1097-2765(00)80265-8.
Article
PubMed
Google Scholar
Gui YJ, Chen JY, Zhang DD, et al. Verticillium dahliae manipulates plant immunity by glycoside hydrolase 12 proteins in conjunction with carbohydrate-binding module 1. Environ Microbiol. 2017;19(5):1914–32. https://doi.org/10.1111/1462-2920.13695.
Article
PubMed
CAS
Google Scholar
Harting R, Höfer A, Tran VT, et al. The Vta1 transcriptional regulator is required for microsclerotia melanization in Verticillium dahliae. Fungal Biol. 2020;124(5):490–500. https://doi.org/10.1016/j.funbio.2020.01.007.
Article
PubMed
CAS
Google Scholar
Hoppenau CE, Trana VT, Kusch H, et al. Verticillium dahliae VdTHI4, involved in thiazole biosynthesis, stress response and DNA repair functions, is required for vascular disease induction in tomato. Environ Exp Bot. 2014;108(1):14–22. https://doi.org/10.1016/j.envexpbot.2013.12.015.
Article
CAS
Google Scholar
Hu D, Wang C, Tao F, et al. Whole genome wide expression profiles on germination of Verticillium dahliae microsclerotia. PLoS ONE. 2014;9(6):e100046. https://doi.org/10.1371/journal.pone.0100046.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hua C, Zhao JH, Guo HS. Trans-kingdom RNA silencing in plant–fungal pathogen interactions. Mol Plant. 2018;11(2):235–44. https://doi.org/10.1016/j.molp.2017.12.001.
Article
PubMed
CAS
Google Scholar
Ingram TW, Oh Y, Adhikari TB, et al. Comparative genome analyses of 18 Verticillium dahliae tomato isolates reveals phylogenetic and race specific signatures. Front Microbiol. 2020;11: 573755. https://doi.org/10.3389/fmicb.2020.573755.
Article
PubMed
PubMed Central
Google Scholar
Jin Y, Guo HS. Plant small RNAs responsive to fungal pathogen infection. In: Ma W, Wolpert T, editors. Plant pathogenic fungi and oomycetes. Methods in molecular biology, vol. 1848. New York, NY: Humana Press; 2018. p. 67–80. https://doi.org/10.1007/978-1-4939-8724-5_6.
Chapter
Google Scholar
Jin L, Chen D, Liao S, et al. Transcriptome analysis reveals downregulation of virulence-associated genes expression in a low virulence Verticillium dahliae strain. Arch Microbiol. 2019;201(7):927–41.
Article
CAS
Google Scholar
Jones JD, Dangl JL. The plant immune system. Nature. 2006;444(7117):323–9.
Article
CAS
Google Scholar
Klimes A, Dobinson KF. A hydrophobin gene, VDH1, is involved in microsclerotial development and spore viability in the plant pathogen Verticillium dahliae. Fungal Genet Biol. 2006;43(4):283–94. https://doi.org/10.1016/j.fgb.2005.12.006.
Article
PubMed
CAS
Google Scholar
Klimes A, Amyotte SG, Grant S, et al. Microsclerotia development in Verticillium dahliae: regulation and differential expression of the hydrophobin gene VDH1. Fungal Genet Biol. 2008;45(12):1525–32. https://doi.org/10.1016/j.fgb.2008.09.014.
Article
PubMed
CAS
Google Scholar
Klimes A, Dobinson KF, Thomma BP, et al. Genomics spurs rapid advances in our understanding of the biology of vascular wilt pathogens in the genus Verticillium. Annu Rev Phytopathol. 2015;53:181–98. https://doi.org/10.1146/annurev-phyto-080614-120224.
Article
PubMed
CAS
Google Scholar
Klosterman SJ, Atallah ZK, Vallad GE, et al. Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol. 2009;47:39–62. https://doi.org/10.1146/annurev-phyto-080508-081748.
Article
PubMed
CAS
Google Scholar
Klosterman SJ, Subbarao KV, Kang S, et al. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathog. 2011;7(7):e1002137. https://doi.org/10.1371/journal.ppat.1002137.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li ZF, Liu YJ, Feng ZL, et al. VdCYC8, encoding CYC8 glucose repression mediator protein, is required for microsclerotia formation and full virulence in Verticillium dahliae. PLoS ONE. 2015;10(12): e0144020. https://doi.org/10.1371/journal.pone.0144020.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li JJ, Zhou L, Yin CM, et al. The Verticillium dahliae Sho1-MAPK pathway regulates melanin biosynthesis and is required for cotton infection. Environ Microbiol. 2019a;21(12):4852–74. https://doi.org/10.1111/1462-2920.14846.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li L, Zhu T, Song Y, et al. Functional characterization of target of rapamycin signaling in Verticillium dahliae. Front Microbiol. 2019b;10:501. https://doi.org/10.3389/fmicb.2019.00501.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li XK, Su XF, Lu GQ, et al. VdOGDH is involved in energy metabolism and required for virulence of Verticillium dahliae. Curr Genet. 2020;66(2):345–59.
Article
CAS
Google Scholar
Liang Y, Cui S, Tang X, et al. An asparagine-rich protein Nbnrp1 modulate Verticillium dahliae protein PevD1-induced cell death and disease resistance in Nicotiana benthamiana. Front Plant Sci. 2018;9:303. https://doi.org/10.3389/fpls.2018.00303.
Article
PubMed
PubMed Central
Google Scholar
Liu SY, Chen JY, Wang JL, et al. Molecular characterization and functional analysis of a specific secreted protein from highly virulent defoliating Verticillium dahliae. Gene. 2013;529(2):307–16. https://doi.org/10.1016/j.gene.2013.06.089.
Article
PubMed
CAS
Google Scholar
Liu T, Song T, Zhang X, et al. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. Nat Commun. 2014;5:4686.
Article
CAS
Google Scholar
Liu L, Xu L, Jia Q, et al. Arms race: diverse effector proteins with conserved motifs. Plant Signal Behav. 2019;14(2):1557008. https://doi.org/10.1080/15592324.2018.1557008.
Article
PubMed
PubMed Central
CAS
Google Scholar
Luo X, Xie C, Dong J, et al. Interactions between Verticillium dahliae and its host: vegetative growth, pathogenicity, plant immunity. Appl Microbiol Biotechnol. 2014;98(16):6921–32.
Article
CAS
Google Scholar
Luo X, Mao H, Wei Y, et al. The fungal-specific transcription factor Vdpf influences conidia production, melanized microsclerotia formation and pathogenicity in Verticillium dahliae. Mol Plant Pathol. 2016;17(9):1364–81. https://doi.org/10.1111/mpp.12367.
Article
PubMed
PubMed Central
CAS
Google Scholar
Luo X, Xie C, Dong J, et al. Comparative transcriptome analysis reveals regulatory networks and key genes of microsclerotia formation in the cotton vascular wilt pathogen. Fungal Genet Biol. 2019;126:25–36. https://doi.org/10.1016/j.fgb.2019.01.009.
Article
PubMed
CAS
Google Scholar
Luo X, Tian T, Tan X, et al. VdNPS, a nonribosomal peptide synthetase, is involved in regulating virulence in Verticillium dahliae. Phytopathology. 2020;110(8):1398–409. https://doi.org/10.1094/PHYTO-02-20-0031-R.
Article
PubMed
CAS
Google Scholar
Ma Z, Song T, Zhu L, et al. A phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell. 2015;27(7):2057–72. https://doi.org/10.1105/tpc.15.00390.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ma Z, Zhu L, Song T, et al. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science. 2017;355(6326):710–4. https://doi.org/10.1126/science.aai7919.
Article
PubMed
CAS
Google Scholar
Maruthachalam K, Klosterman SJ, Kang S, et al. Identification of pathogenicity-related genes in the vascular wilt fungus Verticillium dahliae by Agrobacterium tumefaciens-mediated T-DNA insertional mutagenesis. Mol Biotechnol. 2011;49(3):209–21.
Article
CAS
Google Scholar
Mehrabi R, Bahkali AH, Abd-Elsalam KA, et al. Horizontal gene and chromosome transfer in plant pathogenic fungi affecting host range. FEMS Microbiol Rev. 2011;35(3):542–54. https://doi.org/10.1111/j.1574-6976.2010.00263.x.
Article
PubMed
CAS
Google Scholar
Qi X, Su X, Guo H, et al. A ku70 null mutant improves gene targeting frequency in the fungal pathogen Verticillium dahliae. World J Microbiol Biotechnol. 2015;31(12):1889–97.
Article
CAS
Google Scholar
Qi X, Su X, Guo H, et al. VdThit, a thiamine transport protein, is required for pathogenicity of the vascular pathogen Verticillium dahliae. Mol Plant Microbe Interact. 2016;29(7):545–59. https://doi.org/10.1094/MPMI-03-16-0057-R.
Article
PubMed
CAS
Google Scholar
Qi X, Li X, Guo H, et al. VdPLP, A patatin-like phospholipase in Verticillium dahliae, is involved in cell wall integrity and required for pathogenicity. Genes. 2018;9(3):162. https://doi.org/10.3390/genes9030162.
Article
PubMed Central
CAS
Google Scholar
Qin T, Hao W, Sun R, et al. Verticillium dahliae VdTHI20, involved in pyrimidine biosynthesis, is required for DNA repair functions and pathogenicity. Int J Mol Sci. 2020;21(4):1378. https://doi.org/10.3390/ijms21041378.
Article
PubMed Central
CAS
Google Scholar
Rauyaree P, Ospina-Giraldo MD, Kang S, et al. Mutations in VMK1, a mitogen-activated protein kinase gene, affect microsclerotia formation and pathogenicity in Verticillium dahliae. Curr Genet. 2005;48(2):109–16.
Article
CAS
Google Scholar
Rehman L, Su X, Guo H, et al. Protoplast transformation as a potential platform for exploring gene function in Verticillium dahliae. BMC Biotechnol. 2016;16(1):57.
Article
CAS
Google Scholar
Rehman L, Su X, Li X, et al. FreB is involved in the ferric metabolism and multiple pathogenicity-related traits of Verticillium dahliae. Curr Genet. 2018;64(3):645–59.
Article
CAS
Google Scholar
Santhanam P, Thomma BP. Verticillium dahliae Sge1 differentially regulates expression of candidate effector genes. Mol Plant Microbe Interact. 2013;26(2):249–56. https://doi.org/10.1094/MPMI-08-12-0198-R.
Article
PubMed
CAS
Google Scholar
Santhanam P, van Esse HP, Albert I, et al. Evidence for functional diversification within a fungal NEP1-like protein family. Mol Plant Microbe Interact. 2013;26(3):278–86. https://doi.org/10.1094/MPMI-09-12-0222-R.
Article
PubMed
CAS
Google Scholar
Sarmiento-Villamil JL, García-Pedrajas NE, Baeza-Montañez L, et al. The APSES transcription factor Vst1 is a key regulator of development in microsclerotium- and resting mycelium-producing Verticillium species. Mol Plant Pathol. 2018a;19(1):59–76. https://doi.org/10.1111/mpp.12496.
Article
PubMed
CAS
Google Scholar
Sarmiento-Villamil JL, Prieto P, Klosterman SJ, et al. Characterization of two homeodomain transcription factors with critical but distinct roles in virulence in the vascular pathogen Verticillium dahliae. Mol Plant Pathol. 2018b;19(4):986–1004. https://doi.org/10.1111/mpp.12584.
Article
PubMed
CAS
Google Scholar
Sarmiento-Villamil JL, García-Pedrajas NE, Cañizares MC, et al. Molecular mechanisms controlling the disease cycle in the vascular pathogen Verticillium dahliae characterized through forward genetics and transcriptomics. Mol Plant Microbe Interact. 2020;33(6):825–41. https://doi.org/10.1094/MPMI-08-19-0228-R.
Article
PubMed
CAS
Google Scholar
Shaban M, Miao Y, Ullah A, et al. Physiological and molecular mechanism of defense in cotton against Verticillium dahliae. Plant Physiol Biochem. 2018;125:193–204. https://doi.org/10.1016/j.plaphy.2018.02.011.
Article
PubMed
CAS
Google Scholar
Shamraĭ SN. Plant immune system: the basal immunity. Tsitol Genet. 2014;48(4):67–82.
PubMed
Google Scholar
Shi-Kunne X, van Kooten M, Depotter JRL, et al. The genome of the fungal pathogen Verticillium dahliae reveals extensive bacterial to fungal gene transfer. Genome Biol Evol. 2019;11(3):855–68. https://doi.org/10.1093/gbe/evz040.
Article
PubMed
PubMed Central
CAS
Google Scholar
Singh S, Braus-Stromeyer SA, Timpner C, et al. Silencing of Vlaro2 for chorismate synthase revealed that the phytopathogen Verticillium longisporum induces the cross-pathway control in the xylem. Appl Microbiol Biotechnol. 2010;85(6):1961–76. https://doi.org/10.1007/s00253-009-2269-0.
Article
PubMed
CAS
Google Scholar
Song R, Li J, Xie C, et al. An overview of the molecular genetics of plant resistance to the Verticillium wilt pathogen Verticillium dahliae. Int J Mol Sci. 2020;21(3):1120. https://doi.org/10.3390/ijms21031120.
Article
PubMed Central
CAS
Google Scholar
Stergiopoulos I, de Wit PJ. Fungal effector proteins. Annu Rev Phytopathol. 2009;47:233–63. https://doi.org/10.1146/annurev.phyto.112408.132637.
Article
PubMed
CAS
Google Scholar
Su X, Rehman L, Guo H, et al. The oligosaccharyl transferase subunit STT3 mediates fungal development and is required for virulence in Verticillium dahliae. Curr Genet. 2018;64(1):235–46. https://doi.org/10.1007/s00294-017-0729-0.
Article
PubMed
CAS
Google Scholar
Su X, Lu G, Li X, et al. Host-induced gene silencing of an adenylate kinase gene involved in fungal energy metabolism improves plant resistance to Verticillium dahliae. Biomolecules. 2020;10(1):127. https://doi.org/10.3390/biom10010127.
Article
PubMed Central
CAS
Google Scholar
Sun L, Qin J, Rong W, et al. Cellophane surface-induced gene, VdCSIN1, regulates hyphopodium formation and pathogenesis via cAMP-mediated signalling in Verticillium dahliae. Mol Plant Pathol. 2019;20(3):323–33. https://doi.org/10.1111/mpp.12756.
Article
PubMed
CAS
Google Scholar
Tang C, Xiong D, Fang Y, et al. The two-component response regulator VdSkn7 plays key roles in microsclerotial development, stress resistance and virulence of Verticillium dahliae. Fungal Genet Biol. 2017;108:26–35. https://doi.org/10.1016/j.fgb.2017.09.002.
Article
PubMed
CAS
Google Scholar
Tang C, Li T, Klosterman SJ, et al. The bZIP transcription factor VdAtf1 regulates virulence by mediating nitrogen metabolism in Verticillium dahliae. New Phytol. 2020;226(5):1461–79. https://doi.org/10.1111/nph.16481.
Article
PubMed
CAS
Google Scholar
Tian L, Xu J, Zhou L, et al. VdMsb regulates virulence and microsclerotia production in the fungal plant pathogen Verticillium dahliae. Gene. 2014;550(2):238–44. https://doi.org/10.1016/j.gene.2014.08.035.
Article
PubMed
CAS
Google Scholar
Tian L, Wang Y, Yu J, et al. The mitogen-activated protein kinase kinase VdPbs2 of Verticillium dahliae regulates microsclerotia formation, stress response, and plant infection. Front Microbiol. 2016;7:1532. https://doi.org/10.3389/fmicb.2016.01532.
Article
PubMed
PubMed Central
Google Scholar
Tian L, Yu J, Wang Y, et al. The C2H2 transcription factor VdMsn2 controls hyphal growth, microsclerotia formation, and virulence of Verticillium dahliae. Fungal Biol. 2017;121(12):1001–10. https://doi.org/10.1016/j.funbio.2017.08.005.
Article
PubMed
CAS
Google Scholar
Timpner C, Braus-Stromeyer SA, Tran VT, et al. The Cpc1 regulator of the cross-pathway control of amino acid biosynthesis is required for pathogenicity of the vascular pathogen Verticillium longisporum. Mol Plant Microbe Interact. 2013;26(11):1312–24. https://doi.org/10.1094/MPMI-06-13-0181-R.
Article
PubMed
CAS
Google Scholar
Tran VT, Braus-Stromeyer SA, Kusch H, et al. Verticillium transcription activator of adhesion Vta2 suppresses microsclerotia formation and is required for systemic infection of plant roots. New Phytol. 2014;202(2):565–81. https://doi.org/10.1111/nph.12671.
Article
PubMed
CAS
Google Scholar
Tsolakidou MD, Pantelides LS, Tzima AK, et al. Disruption and overexpression of the gene encoding ACC (1-aminocyclopropane-1-carboxylic acid) deaminase in soil-borne fungal pathogen Verticillium dahliae revealed the role of ACC as a potential regulator of virulence and plant defense. Mol Plant Microbe Interact. 2019;32(6):639–53. https://doi.org/10.1094/MPMI-07-18-0203-R.
Article
PubMed
CAS
Google Scholar
Tzima A, Paplomatas EJ, Rauyaree P, et al. Roles of the catalytic subunit of cAMP-dependent protein kinase A in virulence and development of the soilborne plant pathogen Verticillium dahliae. Fungal Genet Biol. 2010;47(5):406–15. https://doi.org/10.1016/j.fgb.2010.01.007.
Article
PubMed
CAS
Google Scholar
Tzima AK, Paplomatas EJ, Rauyaree P, et al. VdSNF1, the sucrose nonfermenting protein kinase gene of Verticillium dahliae, is required for virulence and expression of genes involved in cell-wall degradation. Mol Plant Microbe Interact. 2011;24(1):129–42. https://doi.org/10.1094/MPMI-09-09-0217.
Article
PubMed
CAS
Google Scholar
Tzima AK, Paplomatas EJ, Tsitsigiannis DI, et al. The G protein β subunit controls virulence and multiple growth- and development-related traits in Verticillium dahliae. Fungal Genet Biol. 2012;49(4):271–83. https://doi.org/10.1016/j.fgb.2012.02.005.
Article
PubMed
CAS
Google Scholar
Wang JY, Cai Y, Gou JY, et al. VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting. Appl Environ Microbiol. 2004;70(8):4989–95. https://doi.org/10.1128/AEM.70.8.4989-4995.2004.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang B, Yang X, Zeng H, et al. The purification and characterization of a novel hypersensitive-like response-inducing elicitor from Verticillium dahliae that induces resistance responses in tobacco. Appl Microbiol Biotechnol. 2012;93(1):191–201. https://doi.org/10.1007/s00253-011-3405-1.
Article
PubMed
CAS
Google Scholar
Wang M, Weiberg A, Lin FM, et al. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat Plants. 2016a;2(10):1–10. https://doi.org/10.1038/nplants.2016.151.
Article
CAS
Google Scholar
Wang Y, Tian L, Xiong D, et al. The mitogen-activated protein kinase gene, VdHog1, regulates osmotic stress response, microsclerotia formation and virulence in Verticillium dahliae. Fungal Genet Biol. 2016b;88:13–23. https://doi.org/10.1016/j.fgb.2016.01.011.
Article
PubMed
CAS
Google Scholar
Wang J, Tian L, Zhang DD, et al. SNARE-encoding genes VdSec22 and VdSso1 mediate protein secretion required for full virulence in Verticillium dahliae. Mol Plant Microbe Interact. 2018a;31(6):651–64. https://doi.org/10.1094/MPMI-12-17-0289-R.
Article
PubMed
CAS
Google Scholar
Wang Y, Deng C, Tian L, et al. The transcription factor VdHapX controls iron homeostasis and is crucial for virulence in the vascular pathogen Verticillium dahliae. mSphere. 2018b;3(5):e00400–18. https://doi.org/10.1128/mSphere.00400-18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang Y, Hu X, Fang Y, et al. Transcription factor VdCmr1 is required for pigment production, protection from UV irradiation, and regulates expression of melanin biosynthetic genes in Verticillium dahliae. Microbiology. 2018c;164(4):685–96. https://doi.org/10.1099/mic.0.000633.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang D, Tian L, Zhang DD, et al. Functional analyses of small secreted cysteine-rich proteins identified candidate effectors in Verticillium dahliae. Mol Plant Pathol. 2020a;21(5):667–85. https://doi.org/10.1111/mpp.12921.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang S, Wu XM, Liu CH, et al. Verticillium dahliae chromatin remodeling facilitates the DNA damage repair in response to plant ROS stress. PLoS Pathog. 2020b;16(4): e1008481. https://doi.org/10.1371/journal.ppat.1008481.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wei C, Qin T, Li Y, et al. Host-induced gene silencing of the acetolactate synthases VdILV2 and VdILV6 confers resistance to Verticillium wilt in cotton (Gossypium hirsutum L.). Biochem Biophys Res Commun. 2020;524(2):392–7. https://doi.org/10.1016/j.bbrc.2020.01.126.
Article
PubMed
CAS
Google Scholar
Wu L, Du G, Bao R, et al. De novo assembly and discovery of genes involved in the response of Solanum sisymbriifolium to Verticillium dahliae. Physiol Mol Biol Plants. 2019;25(4):1009–27. https://doi.org/10.1007/s12298-019-00666-4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xie C, Li Q, Yang X. Characterization of VdASP F2 secretory factor from Verticillium dahliae by a fast and easy gene knockout system. Mol Plant Microbe Interact. 2017;30(6):444–54. https://doi.org/10.1094/MPMI-01-17-0007-R.
Article
PubMed
CAS
Google Scholar
Xiong D, Wang Y, Tian C. Transcriptomic profiles of the smoke tree wilt fungus Verticillium dahliae under nutrient starvation stresses. Mol Genet Genomics. 2015;290(5):1963–77. https://doi.org/10.1007/s00438-015-1052-4.
Article
PubMed
CAS
Google Scholar
Xiong D, Wang Y, Tian L, et al. MADS-Box transcription factor VdMcm1 regulates conidiation, microsclerotia formation, pathogenicity, and secondary metabolism of Verticillium dahliae. Front Microbiol. 2016;7:1192. https://doi.org/10.3389/fmicb.2016.01192.
Article
PubMed
PubMed Central
Google Scholar
Xu J, Wang X, Li Y, et al. Host-induced gene silencing of a regulator of G protein signalling gene (VdRGS1) confers resistance to Verticillium wilt in cotton. Plant Biotechnol J. 2018;16(9):1629–43. https://doi.org/10.1111/pbi.12900.
Article
PubMed Central
CAS
Google Scholar
Yang Y, Zhang Y, Li B, et al. A Verticillium dahliae pectate lyase induces plant immune responses and contributes to virulence. Front Plant Sci. 2018;9:1271. https://doi.org/10.3389/fpls.2018.01271.
Article
PubMed
PubMed Central
Google Scholar
Yuan L, Su Y, Zhou S, et al. A RACK1-like protein regulates hyphal morphogenesis, root entry and in vivo virulence in Verticillium dahliae. Fungal Genet Biol. 2017;99:52–61. https://doi.org/10.1016/j.fgb.2017.01.003.
Article
PubMed
CAS
Google Scholar
Zhang Y, Wang X, Yang S, et al. Cloning and characterization of a Verticillium wilt resistance gene from Gossypium barbadense and functional analysis in Arabidopsis thaliana. Plant Cell Rep. 2011;30(11):2085–96. https://doi.org/10.1007/s00299-011-1115-x.
Article
PubMed
CAS
Google Scholar
Zhang YL, Li ZF, Feng ZL, et al. Isolation and functional analysis of the pathogenicity-related gene VdPR3 from Verticillium dahliae on cotton. Curr Genet. 2015;61(4):555–66. https://doi.org/10.1007/s00294-015-0476-z.
Article
PubMed
CAS
Google Scholar
Zhang DD, Wang XY, Chen JY, et al. Identification and characterization of a pathogenicity-related gene VdCYP1 from Verticillium dahliae. Sci Rep. 2016a;6:27979. https://doi.org/10.1038/srep27979.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang T, Zhao YL, Zhao JH, et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat Plants. 2016b;2(10):16153. https://doi.org/10.1038/nplants.2016.153.
Article
PubMed
CAS
Google Scholar
Zhang YL, Li ZF, Feng ZL, et al. Functional analysis of the pathogenicity-related gene VdPR1 in the vascular wilt fungus Verticillium dahliae. PLoS ONE. 2016c;11(11): e0166000. https://doi.org/10.1371/journal.pone.0166000.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang L, Ni H, Du X, et al. The Verticillium-specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections. New Phytol. 2017a;215(1):368–81. https://doi.org/10.1111/nph.14537.
Article
PubMed
CAS
Google Scholar
Zhang T, Zhang B, Hua C, et al. VdPKS1 is required for melanin formation and virulence in a cotton wilt pathogen Verticillium dahliae. Sci China Life Sci. 2017b;60(8):868–79. https://doi.org/10.1007/s11427-017-9075-3.
Article
PubMed
CAS
Google Scholar
Zhang Y, Gao Y, Liang Y, et al. The Verticillium dahliae SnodProt1-like protein VdCP1 contributes to virulence and triggers the plant immune system. Front Plant Sci. 2017c;8:1880. https://doi.org/10.3389/fpls.2017.01880.
Article
PubMed
PubMed Central
Google Scholar
Zhang WQ, Gui YJ, Short DPG, et al. Verticillium dahliae transcription factor VdFTF1 regulates the expression of multiple secreted virulence factors and is required for full virulence in cotton. Mol Plant Pathol. 2018;19(4):841–57. https://doi.org/10.1111/mpp.12569.
Article
PubMed
CAS
Google Scholar
Zhang J, Zhang Y, Yang J, et al. The α-1,6-mannosyltransferase VdOCH1 plays a major role in microsclerotium formation and virulence in the soil-borne pathogen Verticillium dahliae. Fungal Biol. 2019a;123(7):539–46. https://doi.org/10.1016/j.funbio.2019.05.007.
Article
PubMed
CAS
Google Scholar
Zhang Y, Gao Y, Liang Y, et al. Verticillium dahliae PevD1, an Alt a 1-like protein, targets cotton PR5-like protein and promotes fungal infection. J Exp Bot. 2019b;70(2):613–26. https://doi.org/10.1093/jxb/ery351.
Article
PubMed
CAS
Google Scholar
Zhang YL, Zhao LH, Feng ZL, et al. The role of a new compound micronutrient multifunctional fertilizer against Verticillium dahliae on cotton. Pathogens. 2021;10(1):81. https://doi.org/10.3390/pathogens10010081.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao YL, Zhou TT, Guo HS. Hyphopodium-specific VdNoxB/VdPls1-dependent ROS-Ca2+ signaling is required for plant infection by Verticillium dahliae. PLoS Pathog. 2016;12(7): e1005793. https://doi.org/10.1371/journal.ppat.1005793.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zheng J, Tang C, Deng C, et al. Involvement of a response regulator VdSsk1 in stress response, melanin biosynthesis and full virulence in Verticillium dahliae. Front Microbiol. 2019;10:606. https://doi.org/10.3389/fmicb.2019.00606.
Article
PubMed
PubMed Central
Google Scholar
Zhou BJ, Jia PS, Gao F, et al. Molecular characterization and functional analysis of a necrosis- and ethylene-inducing, protein-encoding gene family from Verticillium dahliae. Mol Plant Microbe Interact. 2012;25(7):964–75. https://doi.org/10.1094/MPMI-12-11-0319.
Article
PubMed
CAS
Google Scholar
Zhou R, Zhu T, Han L, et al. The asparagine-rich protein NRP interacts with the Verticillium effector PevD1 and regulates the subcellular localization of cryptochrome 2. J Exp Bot. 2017a;68(13):3427–40. https://doi.org/10.1093/jxb/erx192.
Article
PubMed
CAS
Google Scholar
Zhou TT, Zhao YL, Guo HS. Secretory proteins are delivered to the septin-organized penetration interface during root infection by Verticillium dahliae. PLoS Pathog. 2017b;13(3):e1006275. https://doi.org/10.1371/journal.ppat.1006275.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou JL, Feng ZL, Liu SC, et al. CGTase, a novel antimicrobial protein from Bacillus cereus YUPP-10, suppresses Verticillium dahliae and mediates plant defence responses. Mol Plant Pathol. 2021;22(1):130–44. https://doi.org/10.1111/mpp.13014.
Article
PubMed
CAS
Google Scholar
Zhu X, Soliman A, Islam MR, et al. Verticillium dahliae’s isochorismatase hydrolase is a virulence factor that contributes to interference with potato’s salicylate and jasmonate defense signaling. Front Plant Sci. 2017;8:399. https://doi.org/10.3389/fpls.2017.00399.
Article
PubMed
PubMed Central
Google Scholar