Abdelmoteleb A, Gonzalez-Mendoza D, Valdez-Salas B, et al. O. Inhibition of Fusarium solani in transgenic insect-resistant cotton plants treated with silver nanoparticles from Prosopis glandulosa and Pluchea sericea. Egypt J Biol Pest Cont. 2018;28(1):4. https://doi.org/10.1186/s41938-017-0005-0.
Article
Google Scholar
Abigail EA, Chidambaram R. Nanotechnology in herbicide resistance. In: Nanostructured materials–fabrication to applications. London: IntechOpen; 2017. p. 207–12. https://doi.org/10.5772/intechopen.68355. Accessed 20 Nov 2020.
Adhikari T, Kundu S, Rao AS. Impact of SiO2 and Mo nanoparticles on seed germination of rice (Oryza sativa L.). Int J Agri Food Sci Technol. 2013;4(8):809–16.
Google Scholar
Ali S, Mehmood A, Khan N. Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. J Nanomater. 2021;2021:6677616. https://doi.org/10.1155/2021/6677616.
Arora S, Sharma P, Kumar S, et al. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul. 2012;66(3):303–10. https://doi.org/10.1007/s10725-011-9649-z.
Aslani F, Bagheri S, Muhd Julkapli N, et al. Effects of engineered nanomaterials on plants growth: an overview. Sci World J. 2014;2014:641759. https://doi.org/10.1155/2014/641759.
Assadian E, Zarei MH, Gilani AG, Farshin M, Degampanah H, Pourahmad J. Toxicity of copper oxide (CuO) nanoparticles on human blood lymphocytes. Biol Trace Elem Res. 2018;184(2):350–7. https://doi.org/10.1007/s12011-017-1170-4.
Bala R, Kalia A, Dhaliwal SS. Evaluation of efficacy of ZnO nanoparticles as remedial zinc nanofertilizer for rice. J Soil Sci Plant Nutr. 2019;19(2):379–89. https://doi.org/10.1007/s42729-019-00040-z.
Article
CAS
Google Scholar
Barrena R, Casals E, Colón J, et al. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere. 2009;75(7):850–7. https://doi.org/10.1016/j.chemosphere.2009.01.078.
Biba R, Tkalec M, Cvjetko P, et al. Silver nanoparticles affect germination and photosynthesis in tobacco seedlings. Acta Bot Croat. 2021;80(1):1. https://doi.org/10.37427/botcro-2020-029.
Article
Google Scholar
Boonyanitipong P, Kositsup B, Kumar P, et al. Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. Int J Biosci Biochem Bioinform. 2011;1(4):282.
Da Costa M, Sharma P. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica. 2016;54(1):110–9. https://doi.org/10.1007/s11099-015-0167-5.
Article
CAS
Google Scholar
Das P, Barua S, Sarkar S, et al. Plant extract–mediated green silver nanoparticles: efficacy as soil conditioner and plant growth promoter. J Hazard Mater. 2018;346:62–72. https://doi.org/10.1016/j.jhazmat.2017.12.020.
de la Rosa G, López-Moreno ML, de Haro D, et al. Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem. 2013;85(12):2161–74. https://doi.org/10.1351/pac-con-12-09-05.
Article
Google Scholar
Deshpande MV. Nanobiopesticide perspectives for protection and nutrition of plants. In: Koul O, editor. Nano-biopesticides today and future perspectives. London: Academic Press; 2019. p. 47–68. https://doi.org/10.1016/B978-0-12-815829-6.00003-6.
Dimkpa C, Singh U, Adisa I, et al. Effects of manganese nanoparticle exposure on nutrient acquisition in wheat (Triticum aestivum L.). Agronomy. 2018;8(9):158. https://doi.org/10.3390/agronomy8090158.
Article
CAS
Google Scholar
Du W, Gardea-Torresdey JL, Ji R, et al. Physiological and biochemical changes imposed by CeO2 nanoparticles on wheat: a life cycle field study. Environ Sci Technol. 2015;49(19):11884–93. https://doi.org/10.1021/acs.est.5b03055.
Article
CAS
PubMed
Google Scholar
Du W, Sun Y, Ji R, et al. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit. 2011;13(4):822–8. https://doi.org/10.1039/c0em00611d.
Article
CAS
PubMed
Google Scholar
Dykman L, Shchyogolev S. The effect of gold and silver nanoparticles on plant growth and development. In: Saylor Y, Irby V, editors. Metal nanoparticles. New York: Nova; 2018. p. 63–300.
Ebrahimi A, Galavi M, Ramroudi M, et al. Effect of TiO2 nanoparticles on antioxidant enzymes activity and biochemical biomarkers in pinto bean (Phaseolus vulgaris L.). J Mol Biol Res. 2016;6(1):58. https://doi.org/10.5539/jmbr.v6n1p58.
Elhawat N, Alshaal T, Hamad E, et al. Nanoparticle-associated phytotoxicity and abiotic stress under agroecosystems. In: Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, editors. Phytotoxicity of Nanoparticles. New York: Springer; 2018. p. 241–68. https://doi.org/10.1007/978-3-319-76708-6_10.
El-Temsah YS, Joner EJ. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol. 2012;27(1):42–9. https://doi.org/10.1002/tox.20610.
Emamverdian A, Ding Y, Xie Y, Sangari S. Silicon mechanisms to ameliorate heavy metal stress in plants. Biomed Res Int. 2018;2018:8492898. https://doi.org/10.1155/2018/8492898.
Faizan M, Faraz A, Yusuf M, et al. Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica. 2018;56(2):678–86. https://doi.org/10.1007/s11099-017-0717-0.
Falco WF, Scherer MD, Oliveira SL, et al. Phytotoxicity of silver nanoparticles on Vicia faba: evaluation of particle size effects on photosynthetic performance and leaf gas exchange. Sci Total Environ. 2020;701:134816. https://doi.org/10.1016/j.scitotenv.2019.134816.
Fytianos G, Rahdar A, Kyzas GZ. Nanomaterials in cosmetics: recent updates. Nanomaterials. 2020;10(5):979. https://doi.org/10.3390/nano10050979.
Article
CAS
PubMed Central
Google Scholar
Gonzalez-Soto T, González-Mendoza D, Troncoso-Rojas R, et al. Molecular identification of Fusarium species isolated from transgenic insect-resistant cotton plants in Mexicali Valley, Baja California. Genet Mol Res. 2015;14(4):11739–44. https://doi.org/10.4238/2015.october.2.7.
Gopinath K, Gowri S, Karthika V, Arumugam A. Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J Nanostruct Chem. 2014;4(3):115. https://doi.org/10.1007/s40097-014-0115-0.
Article
Google Scholar
Gorczyca A, Pociecha E, Maciejewska-Prończuk J, et al. Phytotoxicity of silver nanoparticles and silver ions toward common wheat. Surf Innov. 2021. https://doi.org/10.1680/jsuin.20.00094.
Gruyer N, Dorais M, Bastien C, et al. Interaction between silver nanoparticles and plant growth. International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant. 2013. https://doi.org/10.17660/ActaHortic.2014.1037.105..
Haghighi M, da Silva JAT. The effect of N-TiO2 on tomato, onion, and radish seed germination. J Crop Sci Biotech. 2014;17(4):221–7. https://doi.org/10.1007/s12892-014-0056-7.
Article
Google Scholar
Hao Y, Cao X, Ma C, et al. Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Front Plant Sci. 2017;8:1332. https://doi.org/10.3389/fpls.2017.01332.
Article
PubMed
PubMed Central
Google Scholar
Hao Y, Yuan W, Ma C, et al. Engineered nanomaterials suppress turnip mosaic virus infection in tobacco (Nicotiana benthamiana). Environ Sci Nano. 2018;5(7):1685–93. https://doi.org/10.1039/C8EN00014J.
Helaly MN, El-Metwally MA, El-Hoseiny H, et al. Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Aust J Crop Sci. 2014;8(4):612.
Hobson DW. Nanotoxicology: the toxicology of nanomaterials and nanostructures. Int J Toxicol. 2016;35(1):3–4. https://doi.org/10.1177/1091581816631729.
Article
PubMed
Google Scholar
Jaberzadeh A, Moaveni P, Moghadam HRT, et al. Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2013;41(1):201–7. https://doi.org/10.15835/nbha4119093.
Article
CAS
Google Scholar
Jacob DL, Borchardt JD, Navaratnam L, et al. Uptake and translocation of Ti from nanoparticles in crops and wetland plants. Int J Phytoremediation. 2013;15(2):142–53. https://doi.org/10.1080/15226514.2012.683209.
Article
CAS
PubMed
Google Scholar
Jalil SU, Ansari MI. Nanoparticles and abiotic stress tolerance in plants: synthesis, action, and signaling mechanisms. In: Iqbal M, Khan R, Reddy PS, et al., editors. Plant signaling molecules. Cambridge: Woodhead Publishing; 2019. p. 549–61. https://doi.org/10.1016/B978-0-12-816451-8.00034-4.
Jeevanandam J, Barhoum A, Chan YS, et al. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9:1050–74. https://doi.org/10.3762/bjnano.9.98.
Kango S, Kalia S, Celli A, et al. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites: a review. Prog Pol Sci. 2013;38(8):1232–61. https://doi.org/10.1016/j.progpolymsci.2013.02.003.
Article
CAS
Google Scholar
Konate A, He X, Zhang Z, et al. Magnetic (Fe3O4) Nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability. 2017;9(5):790. https://doi.org/10.3390/su9050790.
Article
CAS
Google Scholar
Kumar A, Gupta K, Dixit S, et al. A review on positive and negative impacts of nanotechnology in agriculture. Int J Environ Sci Technol. 2019;16(4):2175–84. https://doi.org/10.1007/s13762-018-2119-7.
Article
Google Scholar
Kumar V, Guleria P, Kumar V, Yadav SK. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ. 2013;461:462–8. https://doi.org/10.1016/j.scitotenv.2013.05.018.
Article
CAS
PubMed
Google Scholar
Kurvet I, Juganson K, Vija H, et al. Toxicity of nine (doped) rare earth metal oxides and respective individual metals to aquatic microorganisms Vibrio fischeri and Tetrahymena thermophila. Materials. 2017;10(7):754. https://doi.org/10.3390/ma10070754.
Article
CAS
PubMed Central
Google Scholar
Lahiani MH, Dervishi E, Chen J, et al. Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces. 2013;5(16):7965–73. https://doi.org/10.1021/am402052x.
Article
CAS
PubMed
Google Scholar
Lara-Romero J, Campos-García J, Dasgupta-Schubert N, et al. Biological effects of carbon nanotubes generated in forest wildfire ecosystems rich in resinous trees on native plants. PeerJ. 2017;5:e3658. https://doi.org/10.7717/peerj.3658.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larue C, Laurette J, Herlin-Boime N, et al. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ. 2012;431:197–208. https://doi.org/10.1016/j.scitotenv.2012.04.073.
Article
CAS
PubMed
Google Scholar
Lee CW, Mahendra S, Zodrow K, et al. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem Int J. 2010;29(3):669–75. https://doi.org/10.1002/etc.58.
Article
CAS
Google Scholar
Lee WM, Kwak JI, An YJ. Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere. 2012;86(5):491–9. https://doi.org/10.1016/j.chemosphere.2011.10.013.
Article
CAS
PubMed
Google Scholar
Li X, Gui X, Rui Y, et al. Bt-transgenic cotton is more sensitive to CeO2 nanoparticles than its parental non-transgenic cotton. J Hazard Mater. 2014;274:173–80. https://doi.org/10.1016/j.jhazmat.2014.04.025.
Lin D, Xing B. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut. 2007;150(2):243–50. https://doi.org/10.1016/j.envpol.2007.01.016.
Article
CAS
PubMed
Google Scholar
Lv J, Christie P, Zhang S. Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ Sci Nano. 2019;6(1):41–59. https://doi.org/10.1039/C8EN00645H.
Article
CAS
Google Scholar
Ma C, Chhikara S, Xing B, et al. Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng. 2013;1(7):768–78. https://doi.org/10.1021/sc400098h.
Article
CAS
Google Scholar
Mahmoodzadeh H, Nabavi M, Kashefi H. Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornam Hortic Plants. 2013;3:25–32.
Google Scholar
McGee C, Storey S, Clipson N, et al. Soil microbial community responses to contamination with silver, aluminium oxide and silicon dioxide nanoparticles. Ecotoxicology. 2017;26(3):449–58. https://doi.org/10.1007/s10646-017-1776-5.
Article
CAS
PubMed
Google Scholar
Mehboob-ur-Rahman ST, Tabbasam N, et al. Cotton genetic resources. A review. Agron Sustain Dev. 2012;32(2):419–32. https://doi.org/10.1007/s13593-011-0051-z.
Mei L, Li L, Daud MK, et al. Advances on response and resistance to heavy metal stress in cotton. Cotton Sci. 2018;30(1):102–10. https://doi.org/10.11963/1002-7807.mlzsj.20171107.
Article
Google Scholar
Meyer K, Rajanahalli P, Ahamed M, et al. ZnO Nanoparticles induce apoptosis in human dermal fibroblasts via p53 and p38 pathways. Toxicol in Vitro. 2011;25(8):1721–6. https://doi.org/10.1016/j.tiv.2011.08.011.
Mukesh AT, Jha A. A review on: Carbon nanotubes are vital for plant growth. Am J Agric Forestry. 2017;5(5–1):1–9. https://doi.org/10.11648/j.ajaf.s.2017050501.11.
Article
CAS
Google Scholar
Mukherjee A, Sun Y, Morelius E. Differential toxicity of bare and hybrid ZnO nanoparticles in green pea (Pisum sativum L.): a life cycle study. Front Plant Sci. 2016;6:1242. https://doi.org/10.3389/fpls.2015.01242.
Article
PubMed
PubMed Central
Google Scholar
Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, et al. Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics. 2014;6(1):132–8.https://doi.org/10.1039/c3mt00064h .
Nair PMG, Chung IM. Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere. 2014;112:105–13. https://doi.org/10.1016/j.chemosphere.2014.03.056.
Article
CAS
PubMed
Google Scholar
Nair R. Effects of nanoparticles on plant growth and development. In: Kole C, Kumar DS, Riya V, Khodakovskaya MV, editors. Plant nanotechnology: principles and practices. New York: Springer; 2016. p. 95–118. https://doi.org/10.1007/978-3-319-42154-4_5.
Nehra A, Ahlawat S, Singh KP. A biosensing expedition of nanopore: a review. Sens Actuators B Chem. 2019;284:595–622. https://doi.org/10.1016/j.snb.2018.12.143.
Article
CAS
Google Scholar
Nhan LV, Ma C, Rui Y, et al. Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci Rep. 2015;5:11618. https://doi.org/10.1038/srep11618.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nhan LV, Ma C, Rui Y, et al. The effects of Fe2O3 nanoparticles on physiology and insecticide activity in non-transgenic and Bt-transgenic cotton. Front Plant Sci. 2016a;6:1263. https://doi.org/10.3389/fpls.2015.01263.
Article
PubMed
PubMed Central
Google Scholar
Nhan LV, Ma C, Shang J, et al. Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere. 2016b;144:661–70. https://doi.org/10.1016/j.chemosphere.2015.09.028.
Article
CAS
Google Scholar
Nhan LV, Rui Y, Cao W, et al. Toxicity and bio-effects of CuO nanoparticles on transgenic Ipt-cotton. J Plant Interactions. 2016c;11(1):108–16. https://doi.org/10.1080/17429145.2016.1217434.
Article
CAS
Google Scholar
Nhan LV, Rui Y, Gui X, et al. Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotech. 2014;12(1):50. https://doi.org/10.1186/s12951-014-0050-8.
Article
CAS
Google Scholar
Nie Z, Petukhova A, Kumacheva E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat Nanotechnol. 2010;5(1):15–25. https://doi.org/10.1038/nnano.2009.453.
Article
CAS
PubMed
Google Scholar
Nix A, Paull C, Colgrave M. Flavonoid profile of the cotton plant, Gossypium hirsutum: a review. Plants. 2017;6(4):43. https://doi.org/10.3390/plants6040043.
Article
CAS
PubMed Central
Google Scholar
Oloumi H, Mousavi EA, Nejad RM. Multi-wall carbon nanotubes effects on plant seedlings growth and cadmium/lead uptake in vitro. Russ J Plant Physiol. 2018;65(2):260–8. https://doi.org/10.1134/S102144371802019X.
Patel A, Tiwari S, Parihar P, et al. Carbon nanotubes as plant growth regulators: impacts on growth, reproductive system, and soil microbial community. In: Tripathi DK, Ahmad P, Sharma S, et al., editors. Nanomaterials in plants, algae and microorganisms. London: Academic; 2017. p. 23–42. https://doi.org/10.1002/smll.201201225.
Peharec ŠP, Košpić K, Lyons DM, et al. Phytotoxicity of silver nanoparticles on tobacco plants: evaluation of coating effects on photosynthetic performance and chloroplast ultrastructure. Nanomaterials. 2021;11(3):744. https://doi.org/10.3390/nano11030744.
Article
CAS
Google Scholar
Pradhan S, Patra P, Das S, et al. Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol. 2013;47(22):13122–31. https://doi.org/10.1021/es402659t.
Article
CAS
PubMed
Google Scholar
Prasad T, Sudhakar P, Sreenivasulu Y, et al. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr. 2012;35(6):905–27. https://doi.org/10.1080/01904167.2012.663443.
Article
CAS
Google Scholar
Priester JH, Moritz SC, Espinosa K, et al. Damage assessment for soybean cultivated in soil with either CeO2 or ZnO manufactured Nanomaterials. Sci Total Environ. 2017;579:1756–68. https://doi.org/10.1016/j.scitotenv.2016.11.149.
Article
CAS
PubMed
Google Scholar
Rajput V, Minkina T, Suskova S, et al. Effects of copper nanoparticles (CuO NPs) on crop plants: a mini review. BioNanoScience. 2018;8(1):36–42. https://doi.org/10.1007/s12668-017-0466-3.
Article
Google Scholar
Rajput VD, Minkina T, Sushkova S, et al. Effect of nanoparticles on crops and soil microbial communities. J Soils Sediments. 2017;18(6):2179–87. https://doi.org/10.1007/s11368-017-1793-2.
Article
CAS
Google Scholar
Raskar S, Laware S. Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol Appl Sci. 2014;3(2):467–73.
CAS
Google Scholar
Rastogi A, Zivcak M, Sytar O, et al. Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem. 2017;5:78. https://doi.org/10.3389/fchem.2017.00078.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rico CM, Lee SC, Rubenecia R, et al. Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). J Agric Food Chem. 2014;62(40):9669–75. https://doi.org/10.1021/jf503526r.
Article
CAS
PubMed
Google Scholar
Rizwan M, Ali S, Ali B, et al. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere. 2019;214:269–77. https://doi.org/10.1016/j.chemosphere.2018.09.120.
Article
CAS
PubMed
Google Scholar
Roh JY, Choi JY, Li MS, et al. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol. 2007;17(4):547–59.
CAS
PubMed
Google Scholar
Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V. Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnology. 2017;15(1):33. https://doi.org/10.1186/s12951-017-0268-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salama HM. Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol. 2012;3(10):190–7.
Salata OV. Applications of nanoparticles in biology and medicine. J Nanobiotech. 2004;2(1):3. https://doi.org/10.1186/1477-3155-2-3.
Article
Google Scholar
Sawan ZM. Cotton production and climatic factors: studying the nature of its relationship by different statistical methods. Cogent Biol. 2017;3(1):1292882. https://doi.org/10.1080/23312025.2017.1292882.
Article
CAS
Google Scholar
Sedghi M, Hadi M, Toluie SG. Effect of nano zinc oxide on the germination parameters of soybean seeds under drought stress. Ann West Univ Timisoara Biol. 2013;16(2):73.
Google Scholar
Sekoai PT, Ouma CNM, du Preez SP, et al. Application of nanoparticles in biofuels: an overview. Fuel. 2019;237:380–97. https://doi.org/10.1016/j.fuel.2018.10.030.
Article
CAS
Google Scholar
Sharma P, Bhatt D, Zaidi M, et al. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol. 2012;167(8):2225–33. https://doi.org/10.1007/s12010-012-9759-8.
Article
CAS
PubMed
Google Scholar
Siddiqui MH, Al-Whaibi MH, Firoz M, et al. Role of nanoparticles in plants, nanotechnology and plant sciences: nanoparticles and their impact on plants. Dordrecht: Springer; 2015. https://doi.org/10.1007/978-3-319-14502-0.
Singh AK. Engineered nanoparticles. Cambridge: Academic Press; 2016. p. 1–18.
Singh D, Kumar A. Impact of irrigation using water containing CuO and ZnO nanoparticles on Spinach oleracea grown in soil media. Bull Environ Contam Toxicol. 2016;97(4):548–53. https://doi.org/10.1007/s00128-016-1872-x.
Article
CAS
PubMed
Google Scholar
Song H. Metal hybrid nanoparticles for catalytic organic and photochemical transformations. Acc Chem Res. 2015;48(3):491–9. https://doi.org/10.1021/ar500411s.
Article
CAS
PubMed
Google Scholar
Sosan A, Svistunenko D, Straltsova D, et al. Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. Plant J. 2016;85(2):245–57. https://doi.org/10.1111/tpj.13105.
Article
CAS
PubMed
Google Scholar
Shabbir S, Kulyar M FeA, Bhutta ZA, et al. Toxicological consequences of titanium dioxide nanoparticles (TiO2NPs) and their jeopardy to human population. BioNanoSci. 2021. https://doi.org/10.1007/s12668-021-00836-3.
Srinivasan C, Saraswathi R. Nano-agriculture-carbon nanotubes enhance tomato seed germination and plant growth. Curr Sci. 2010;99(3):274–5.
CAS
Google Scholar
Srivastav AK, Kumar M, Ansari NG, et al. A comprehensive toxicity study of zinc oxide nanoparticles versus their bulk in wistar rats: toxicity study of zinc oxide nanoparticles. Hum Exp Toxicol. 2016;35(12):1286–304. https://doi.org/10.1177/0960327116629530.
Article
CAS
PubMed
Google Scholar
Suriyaprabha R, Karunakaran G, Yuvakkumar R, et al. Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr Nanosci. 2012;8(6):902–8. https://doi.org/10.2174/157341312803989033.
Syu YY, Hung JH, Chen JC, Chuang HW. Impacts of size and shape of silver nanoparticles on arabidopsis plant growth and gene expression. Plant Physiol Biochem. 2014;83:57–64. https://doi.org/10.1016/j.plaphy.2014.07.010.
Article
CAS
PubMed
Google Scholar
Taylor AF, Rylott EL, Anderson CW, et al. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One. 2014;9(4):e93793. https://doi.org/10.1371/journal.pone.0093793.
Thorp K, Ale S, Bange M, et al. Development and application of process-based simulation models for cotton production: a review of past, present, and future directions. J Cotton Sci. 2014;18(1):10–47.
Google Scholar
Thuesombat P, Hannongbua S, Akasit S, Chadchawan S. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf. 2014;104:302–9. https://doi.org/10.1016/j.ecoenv.2014.03.022.
Article
CAS
PubMed
Google Scholar
Umar H, Kavaz D, Rizaner N. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int J Nanomedicine. 2019;14:87–100. https://doi.org/10.2147/IJN.S186888.
Ursache-Oprisan M, Focanici E, Creanga D, et al. Sunflower chlorophyll levels after magnetic nanoparticle supply. Afr J Biotechnol. 2011;10(36):7092–8. https://doi.org/10.5897/AJB11.477.
Article
CAS
Google Scholar
Vajpayee P, Khatoon I, Patel CB, et al. Adverse effects of chromium oxide nano-particles on seed germination and growth in Triticum aestivum L. J Biomed Nanotechnol. 2011;7(1):205–6. https://doi.org/10.1166/jbn.2011.1270.
Article
CAS
PubMed
Google Scholar
Venkatachalam P, Priyanka N, Manikandan K, et al. Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem. 2017;110:118–27. https://doi.org/10.1016/j.plaphy.2016.09.004.
Vera-Reyes I, Vázquez-Núñez E, Lira-Saldivar RH, Méndez-Argüello B. Effects of nanoparticles on germination, growth, and plant crop development. In: López-Valdez F, Fernández-Luqueño F, editors. Agricultural nanobiotechnology: modern agriculture for a sustainable future. New York: Springer; 2018. p. 77–110. https://doi.org/10.1007/978-3-319-96719-6_5.
Wang A, Zheng Y, Peng F. Thickness-controllable silica coating of CdTe QDs by reverse microemulsion method for the application in the growth of rice. J Spectrosc. 2014;2014:1–5. https://doi.org/10.1155/2014/169245.
Article
CAS
Google Scholar
Wang Q, Ma X, Zhang W, et al. The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics. 2012a;4(10):1105–12. https://doi.org/10.1039/c2mt20149f.
Article
CAS
PubMed
Google Scholar
Wang Z, Xie X, Zhao J, et al. Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol. 2012b;46(8):4434–41. https://doi.org/10.1021/es204212z.
Article
CAS
PubMed
Google Scholar
Wegier A, Alavez V, Piñero D. Cotton: traditional and modern uses. In: Lira R, Casas A, Blancas J, editors. Ethnobotany of Mexico: interactions of people and plants in Mesoamerica. New York: Springer; 2016. p. 439–56. https://doi.org/10.1007/978-1-4614-6669-7_18.
Chapter
Google Scholar
Witjaksono J, Wei X, Mao S, et al. Yield and economic performance of the use of GM cotton worldwide over time: a review and meta-analysis. China Agr Econ Rev. 2014;6(4):616–43. https://doi.org/10.1108/CAER-02-2013-0028.
Article
Google Scholar
Worrall E, Hamid A, Mody K, et al. Nanotechnology for plant disease management. Agronomy. 2018;8(12):285. https://doi.org/10.3390/agronomy8120285.
Article
CAS
Google Scholar
Xu SJ, Fang D, Tian XQ, et al. Analysis and assessment on heavy metal contamination in cotton seeds of Hunan Province. Cotton Sci. 2019;31(1):72–8. https://doi.org/10.11963/1002-7807.xsjml.20190122.
Article
Google Scholar
Yang A, Qi M, Wang X, et al. Refined cottonseed oil as a replacement for soybean oil in broiler diet. Food Sci Nutr. 2019;7(3):1027–34. https://doi.org/10.1002/fsn3.933.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Cao W, Rui Y. Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J Plant Interactions. 2017;12(1):158–69. https://doi.org/10.1080/17429145.2017.1310944.
Article
CAS
Google Scholar
Yang L, Watts DJ. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett. 2005;158(2):122–32. https://doi.org/10.1016/j.toxlet.2005.03.003.
Article
CAS
PubMed
Google Scholar
Yanık F, Vardar F. Toxic effects of aluminum oxide (Al2O3) nanoparticles on root growth and development in Triticum aestivum. Water Air Soil Poll. 2015;226(9):296. https://doi.org/10.1007/s11270-015-2566-4.
Yoon SJ, Kwak JI, Lee WM, et al. Zinc oxide nanoparticles delay soybean development: a standard soil microcosm study. Ecotoxicol Environ Saf. 2014;100:131–7. https://doi.org/10.1016/j.ecoenv.2013.10.014.
Article
CAS
PubMed
Google Scholar
Zhao L, Peralta-Videa JR, Armando VR, et al. Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: insight into the uptake mechanism. J Hazard Mater. 2012;225:131–8. https://doi.org/10.1016/j.jhazmat.2012.05.008.
Zhao L, Sun Y, Hernandez-Viezcas JA, et al. Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem. 2013;61(49):11945–51. https://doi.org/10.1021/jf404328e.
Article
CAS
PubMed
Google Scholar
Zhu Y, Xu F, Liu Q, et al. Nanomaterials and plants: positive effects, toxicity and the remediation of metal and metalloid pollution in soil. Sci Total Environ. 2019;662:414–21. https://doi.org/10.1016/j.scitotenv.2019.01.234.
Article
CAS
PubMed
Google Scholar